遗传 ›› 2022, Vol. 44 ›› Issue (9): 772-782.doi: 10.16288/j.yczz.22-116
收稿日期:
2022-04-18
修回日期:
2022-07-29
出版日期:
2022-09-20
发布日期:
2022-08-17
通讯作者:
马伟
E-mail:14646@sicau.edu.cn;weima03@jiangnan.edu.cn
作者简介:
吴丹丹,讲师,研究方向:染色体结构与功能。E-mail: 基金资助:
Dandan Wu1,2(), Mingkun Zhu1, Zhongyan Fang1, Wei Ma3()
Received:
2022-04-18
Revised:
2022-07-29
Online:
2022-09-20
Published:
2022-08-17
Contact:
Ma Wei
E-mail:14646@sicau.edu.cn;weima03@jiangnan.edu.cn
Supported by:
摘要:
B染色体(B chromosomes, Bs)是独立于常规染色体即A染色体(A chromosomes, As)的一类特殊染色体。长期以来,由于实验方法的限制和B染色体可有可无的性质,B染色体一直被认为是完全由异染色质组成且不携带任何功能基因。随着高通量测序技术的发展,很多物种的B染色体被分离,通过对其DNA组成进行全面分析,发现B染色体也携带蛋白质编码基因且对宿主的转录和蛋白表达有影响。本文以黑麦(Secale cereale L.)、玉米(Zea mays L.)和拟斯卑尔脱山羊草(Aegilops speltoides Tausch.)为例,主要介绍了B染色体对植物表型的影响、B染色体的分子结构及DNA重复序列组成、B染色体的功能基因研究,并讨论了植物B染色体领域的研究现状及潜在的应用前景,旨在为染色体工程和育种提供新思路。
吴丹丹, 朱明昆, 方忠艳, 马伟. 植物B染色体的分子结构组成及遗传机制研究进展[J]. 遗传, 2022, 44(9): 772-782.
Dandan Wu, Mingkun Zhu, Zhongyan Fang, Wei Ma. Progress on molecular composition and genetic mechanism of plant B chromosomes[J]. Hereditas(Beijing), 2022, 44(9): 772-782.
[1] | Jones RN . New species with B chromosomes discovered since 1980. Nucleus, 2017,60(3):263-281. |
[2] | Shu FJ, Zhang XR, Cao XR, Li CJ . Studies of the polymorphism of Elaphodus cephalophus B chromosomes and its transmit mechanism. Hereditas (Beijing), 1999,21(6):23-27. |
束峰珏, 张锡然, 曹祥荣, 李朝军 . 毛冠鹿B染色体多态及遗传机制探讨. 遗传, 1999,21(6):23-27. | |
[3] | Houben A . B chromosomes--a matter of chromosome drive. Front Plant Sci, 2017,8:210. |
[4] | Jones RN, Houben A . B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci, 2003,8(9):417-423. |
[5] | Camacho JP, Sharbel TF, Beukeboom LW . B-chromosome evolution. Philos Trans R Soc Lond B Biol Sci, 2000,355(1394):163-178. |
[6] | Valente GT, Conte MA, Fantinatti BE Cabral-de-Mello DC, Carvalho RF, Vicari MR, Kocher TD, Martins C. Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses. Mol Biol Evol, 2014,31(8):2061-2072. |
[7] | Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, Schmutzer T, Scholz U, Gundlach H, Wicker T, Šimková H, Novák P, Neumann P, Kubaláková M, Bauer E, Haseneyer G, Fuchs J, Doležel J, Stein N, Mayer KFX, Houben A . Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA, 2012,109(33):13343-13346. |
[8] | Ruban A, Fuchs J, Marques A, Schubert V, Soloviev A, Raskina O, Badaeva E, Houben A . B chromosomes of Aegilops speltoides are enriched in organelle genome- derived sequences. PLoS One, 2014,9(2):e90214. |
[9] | Ruban A, Schmutz T, Wu DD, Fuchs J, Boudichevskaia A, Rubtsova M, Pistrick K, Melzer M, Himmelbach A, Schubert V, Scholz U, Houben A . Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat Commun, 2020,11(1):2764. |
[10] | Dhar MK, Kour J, Kaul S . Origin, behaviour, and transmission of B chromosome with special reference to Plantago lagopus. Genes (Basel), 2019,10(2):152. |
[11] | Hauber DP . Supernumerary chromosomes in Tradescantia I. meiotic behavior of three homologous isochromosomes. Genetics, 1987,75:117-121. |
[12] | Nakao M . Cytological studies on the nuclear division of the pollen mother cells of some cereals and their hybrids. The Journal of the College of Agriculture, Tohoku Imperial University, 1911,4(3):173-190. |
[13] | D'Ambrosio U, Alonso-Lifante MP, Barros K, Kovařík A, Mas de Xaxars G, Garcia S. B-chrom: a database on B-chromosomes of plants, animals and fungi. New Phytol, 2017,216(3):635-642. |
[14] | Levin DA, Palestis BG, Jones RN, Trivers R . Phyletic hot spots for B chromosomes in angiosperms. Evolution, 2005,59(5):962-969. |
[15] | Houben A, Kumke K, Nagaki K, Hause G . CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L.). Chromosome Res, 2011,19(4):471-480. |
[16] | Jones RN . B chromosomes in plants. New Phytol, 1995,131(4):411-434. |
[17] | Zečević LJ, Paunović D . The effect of B-chromosomes on chiasma frequency in wild populations of rye. Chromosoma, 1969,27:198-200. |
[18] | Jones RN, Rees H. B chromosomes, 1st edn. London, UK, New York, NY, USA: Academic Press, 1982. |
[19] | Bougourd SM, Jones RN . B chromosomes: a physiological enigma. New Phytol, 1997,137(1):43-54. |
[20] | Randolph LF . Genetic characteristics of the B chromosomes in maize. Genetics, 1941,26(6):608-631. |
[21] | Dherawattana A, Sadanaga K . Cytogenetics of a crown rust-resistant hexaploid oat with 42+2 fragment chromosomes. Crop Sci, 1973,13(6):591-594. |
[22] | Zarchi Y, Hillel J, Simchen G . Supernumerary chromosomes and chiasma distribution in Triticum speltoides. Heredity, 1974,33:173-180. |
[23] | Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O . Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA, 2011,1(1):6. |
[24] | Mendelson D, Zohary D . Behaviour and transmission of supernumerary chromosomes in Aegilops speltoides. Heredity, 1972,29:329-346. |
[25] | Belyayev A, Raskina O . Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences. Ann Bot, 2013,111(4):531-538. |
[26] | Cebria A, Navarro ML, Puertas MJ . Genetic control of B chromosome transmission in Aegilops speltoides(Poaceae). Am J Bot, 1994,81(11):1502-1507. |
[27] | Hasegawa N . A cytological study on 8-chromosome rye. Cytologia, 1934,6(1):68-77. |
[28] | Langdon T, Seago C, Jones RN, Ougham H, Thomas H, Forster JW, Jenkins G . De novo evolution of satellite DNA on the rye B chromosome. Genetics, 2000,154(2):869-884. |
[29] | Müntzing A . Cytological studies of extra fragment chromosomes in rye II. transmission and multiplication of standard fragments and iso-fragments. Hereditas, 1945,31(3-4):457-477. |
[30] | Håkansson A . Behaviour of accessory rye chromosomes in the embryo-sac. Hereditas, 1948,34(1-2):35-59. |
[31] | Puertas MJ, González-Sánchez M, Manzanero S, Romera F, Jiménez MM . Genetic control of the rate of transmission of rye B chromosomes. IV. Localization of the genes controlling B transmission rate. Heredity, 1998,80(2):209-213. |
[32] | Niwa K, Sakamoto S . Origin of B chromosomes in cultivated rye. Genome, 1995,38(2):307-312. |
[33] | Endo TR, Nasuda S, Jones RN, Dou QW, Akahori A, Wakimoto M, Tanaka H, Niwa K, Tsujimoto H . Dissection of rye B chromosomes, and nondisjunction properties of the dissected segments in a common wheat background. Genes Genet Syst, 2008,83(1):23-30. |
[34] | Kishikawa H, Suzuki A . Cytological study on hypo- pentaploid Triticale with four B chromosomes of rye. The Japanese Journal of Genetics, 1982,57(1):17-24. |
[35] | Wu DD, Ruban A, Fuchs J, Macas J, Novák P, Vaio M, Zhou YH, Houben A . Nondisjunction and unequal spindle organization accompany the drive of Aegilops speltoides B chromosomes. New Phytol, 2019,223(3):1340-1352. |
[36] | Yu WC, Lamb JC, Han FP, Birchler JA . Telomere- mediated chromosomal truncation in maize. Proc Natl Acad Sci USA, 2006,103(46):17331-17336. |
[37] | Rosato M, Chiavarino AM, Naranjo CA, Puertas MJ, Poggio L . Genetic control of B chromosome transmission rate in Zea mays ssp. mays(Poaceae). Am J Bot, 1996,83(9):1107-1112. |
[38] | González-Sánchez M, González-González E, Molina F, Chiavarino AM, Rosato M, Puertas MJ . One gene determines maize B chromosome accumulation by preferential fertilisation; another gene(s) determines their meiotic loss. Heredity (Edinb), 2003,90(2):122-129. |
[39] | Carlson WR . Locating a site on the maize B chromosome that controls preferential fertilization. Genome, 2007,50(6):578-587. |
[40] | Masonbrink RE, Birchler JA . Sporophytic nondisjunction of the maize B chromosome at high copy numbers. J Genet Genomics, 2010,37(1):79-84. |
[41] | Jones RN . B-chromosome systems in flowering plants and animal species. Int Rev Cytol, 1975,40:1-100. |
[42] | Donald TM, Houben A, Leach CR, Timmis JN . Ribosomal RNA genes specific to the B chromosomes in Brachycome dichromosomatica are not transcribed in leaf tissue. Genome, 1997,40(5):674-681 |
[43] | Szczerbal I, Switonski M . B chromosomes of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray) contain inactive NOR-like sequences. Caryologia, 2003,56(2):213-216. |
[44] | Leach CR, Houben A, Field B, Pistrick K, Demidov D, Timmis JN . Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics, 2005,171(1):269-278. |
[45] | Huang W, Du Y, Zhao X, Jin WW . B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol, 2016,16:88. |
[46] | Ruban A, Schmutzer T, Scholz U, Houben A . How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes (Basel), 2017,8(11):294. |
[47] | Fuchs J, Demidov D, Houben A, Schubert I . Chromosomal histone modification patterns--from conservation to diversity. Trends Plant Sci, 2006,11(4):199-208. |
[48] | Marschner S, Kumke K, Houben A . B chromosomes of B. dichromosomatica show a reduced level of euchromatic histone H3 methylation marks. Chromosome Res, 2007,15(2):215-222. |
[49] | Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A, Morais-Cecílio L, Jones RN, Viegas W, Houben A . Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell, 2007,19(6):1738-1749. |
[50] | Jin WW, Lamb JC, Zhang WL, Kolano B, Birchler JA, Jiang JM . Histone modifications associated with both A and B chromosomes of maize. Chromosome Res, 2008,16(8):1203-1214. |
[51] | Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novák P, Houben A . High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol, 2013,199(2):550-558. |
[52] | Marques A, Banaei-Moghaddam AM, Klemme S, Blattner FR, Niwa K, Guerra M, Houben A . B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann Bot, 2013,112(3):527-534. |
[53] | Marques A, Klemme S, Houben A . Evolution of plant B chromosome enriched sequences. Genes (Basel), 2018,9(10):515. |
[54] | Blavet N, Yang H, Su HD, Solanský P, Douglas RN, Karafiátová M, Šimková L, Zhang J, Liu YL, Hou J, Shi XW, Chen C, El-Walid M, McCaw ME, Albert PS, Gao Z, Zhao CZ, Ben-Zvi G, Glick L, Kol G, Shi JH, Vrána J, Šimková H, Lamb JC, Newton K, Dawe RK, Doležel J, Ji TM, Baruch K, Cheng JL, Han FP, Birchler JA, Bartoš J. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc Natl Acad Sci USA, 2021,118(23):e2104254118. |
[55] | Alfenito MR, Birchler JA . Molecular characterization of a maize B chromosome centric sequence. Genetics, 1993,135(2):589-597. |
[56] | Cheng YM, Lin BY . Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics, 2003,164(1):299-310. |
[57] | Cheng YM, Lin BY . Molecular organization of large fragments in the maize B chromosome: indication of a novel repeat. Genetics, 2004,166(4):1947-1961. |
[58] | Jin WW, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang JM . Molecular and functional dissection of the maize B chromosome centromere. Plant Cell, 2005,17(5):1412-1423. |
[59] | Lamb JC, Kato A, Birchler JA . Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma, 2005,113(7):337-349. |
[60] | Lamb JC, Riddle NC, Cheng YM, Theuri J, Birchler JA . Localization and transcription of a retrotransposon- derived element on the maize B chromosome. Chromosome Res, 2007,15(5):383-398. |
[61] | Stark EA, Connerton I, Bennett ST, Barnes SR, Parker JS, Forster JW . Molecular analysis of the structure of the maize B-chromosome. Chromosome Res, 1996,4(1):15-23. |
[62] | Ziegler CG, Lamatsch DK, Steinlein C, Engel W, Schartl M, Schmid M . The giant B chromosome of the cyprinid fish Alburnus alburnus harbours a retrotransposon-derived repetitive DNA sequence. Chromosome Res, 2003,11(1):23-35. |
[63] | Coan RLB, Martins C . Landscape of transposable elements focusing on the B chromosome of the cichlid fish Astatotilapia latifasciata. Genes (Basel), 2018,9(6):269. |
[64] | Biémont C, Vieira C . Genetics: junk DNA as an evolutionary force. Nature, 2006,443(7111):521-524. |
[65] | Timmis JN, Ayliffe MA, Huang CY, Martin W . Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 2004,5(2):123-135. |
[66] | Lloyd AH, Timmis JN . The origin and characterization of new nuclear genes originating from a cytoplasmic organellar genome. Mol Biol Evol, 2011,28(7):2019-2028. |
[67] | Banaei-Moghaddam AM, Meier K, Karimi-Ashtiyani R, Houben A . Formation and expression of pseudogenes on the B chromosome of rye. Plant Cell, 2013,25(7):2536-2544. |
[68] | Ma W, Gabriel TS, Martis MM, Gursinsky T, Schubert V, Vrána J, Doležel J, Grundlach H, Altschmied L, Scholz U, Himmelbach A, Behrens SE, Banaei-Moghaddam AM, Houben A . Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. New Phytol, 2017,213(2):916-928. |
[69] | Boudichevskaia A, Ruban A, Thiel J, Fiebig A, Houben A . Tissue-specific transcriptome analysis reveals candidate transcripts associated with the process of programmed B chromosome elimination in Aegilops speltoides. Int J Mol Sci, 2020,21(20):7596. |
[70] | Huang YH, Peng SF, Lin YP, Cheng YM . The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from A chromosomes. Chromosome Res, 2020,28(2):129-138. |
[71] | Shi XW, Yang H, Chen C, Hou J, Ji TM, Cheng JL, Birchler JA . Effect of aneuploidy of a non-essential chromosome on gene expression in maize. Plant J, 2022,110(1):193-211. |
[72] | Ma W, Liu ZJ, Beier S, Houben A, Carpentier S . Identification of rye B chromosome-associated peptides by mass spectrometry. New Phytol, 2021,230(6):2179-2185. |
[73] | Bernardino ACS, Cabral-de-Mello DC, Machado CB, Palacios-Gimenez OM, Santos N, Loreto V. B chromosome variants of the grasshopper Xyleus discoideus angulatus are potentially derived from pericentromeric DNA. Cytogenet Genome Res, 2017,152(4):213-221. |
[74] | Ramos É, Cardoso AL, Brown J, Marques DF, Fantinatti BEA, Cabral-de-Mello DC, Oliveira RA, O'Neill RJ, Martins C. The repetitive DNA element BncDNA, enriched in the B chromosome of the cichlid fish Astatotilapia latifasciata, transcribes a potentially noncoding RNA. Chromosoma, 2017,126(2):313-323. |
[75] | Habig M, Kema GHJ, Stukenbrock EH . Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. Elife, 2018,7:e40251. |
[76] | Hanlon SL, Miller DE, Eche S, Hawley RS . Origin, composition, and structure of the supernumerary B chromosome of Drosophila melanogaster. Genetics, 2018,210(4):1197-1212. |
[77] | Nicholson J . Imbalance is not an impediment: understanding the natural imbalances of sex and B-chromosomes in species by understanding cancer karyotypes. The Winnower, 2015,2:e143284-47033. |
[78] | Ghiurcuta CG, Moret BM . Evaluating synteny for improved comparative studies. Bioinformatics, 2014,30(12):i9-18. |
[79] | Yu WC, Han FP, Gao Z, Vega JM, Birchler JA . Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA, 2007,104(21):8924-8929. |
[80] | Wang K, Wu YF, Zhang WL, Dawe RK, Jiang JM . Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res, 2014,24(1):107-116. |
[81] | Tseng SH, Peng SF, Cheng YM . Analysis of B chromosome nondisjunction induced by the r-X1 deficiency in maize. Chromosome Res, 2017,26(3):153-162. |
[82] | Fu SL, Gao Z, Birchler J, Han FP . Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics, 2012,39(3):125-130. |
[83] | Burrack LS, Hutton FH, Matter KJ, Clancey SA, Liachko I, Plemmons AE, Saha A, Power EA, Turman B, Thevandavakkam MA, Ay F, Dunham MJ, Berman J . Neocentromeres provide chromosome segregation accuracy and centromere clustering to multiple loci along a Candida albicans chromosome. PLoS Genet, 2016,12(9):e1006317. |
[84] | Schneider KL, Xie ZD, Wolfgruber TK, Presting GG . Inbreeding drives maize centromere evolution. Proc Natl Acad Sci USA, 2016,113(8):e987-996. |
[1] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[2] | 张元, 赵语婷, 庄乐南, 贺津. 转录中介体复合物在心血管发育和疾病中的转录调控作用[J]. 遗传, 2022, 44(5): 383-397. |
[3] | 刘国芳, 任沛东, 叶文新, 陆光涛. 十字花科黑腐病菌中转录因子HpaR1与Clp调控一个糖苷水解酶基因表达的分析[J]. 遗传, 2021, 43(9): 910-920. |
[4] | 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[5] | 刘国芳, 王欣欣, 苏辉昭, 陆光涛. 细菌GntR家族转录调控因子的研究进展[J]. 遗传, 2021, 43(1): 66-73. |
[6] | 邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
[7] | 任恋, 吴秀山, 李永青. 组蛋白去乙酰化酶在调节心肌肥大过程中的作用机制[J]. 遗传, 2020, 42(6): 536-547. |
[8] | 陈敏, 张峥, 孟紫媛, 张学军. ATAC-seq在复杂疾病研究中的应用进展[J]. 遗传, 2020, 42(4): 347-353. |
[9] | 高晓萌, 张治华. 生物大分子“液-液相分离”调控染色质三维空间结构和功能[J]. 遗传, 2020, 42(1): 45-56. |
[10] | 张雨, 方玉达. Cohesin结构及功能研究进展[J]. 遗传, 2020, 42(1): 57-72. |
[11] | 郑晓飞,黄海燕,吴强. 染色质架构蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019, 41(6): 509-523. |
[12] | 刘振宁, 袁黎, VenkatesanSundaresan, 余小林. 拟南芥CKI1基因上游转录调控因子筛选及鉴定[J]. 遗传, 2019, 41(5): 430-438. |
[13] | 程敏, 张文建, 邢天宇, 闫晓红, 李玉茂, 李辉, 王宁. 鸡miR-17-92基因簇上游调控区功能分析[J]. 遗传, 2016, 38(8): 724-735. |
[14] | 丁楠, 渠鸿竹, 方向东. ENCODE计划和功能基因组研究[J]. 遗传, 2014, 36(3): 237-247. |
[15] | 张俊芳 朱化彬 张留光 郝海生 赵学明 秦彤 路永强 王栋. 精子形成期基因转录表达的研究进展[J]. 遗传, 2013, 35(5): 587-594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: