[1] Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res, 2011, 39(4): 1360-1371.[2] Kuchta RD, Stengel G. Mechanism and evolution of DNA primases. Biochim Biophys Acta, 2010, 1804(5): 1180-1189.[3] Eoff RL, Sanchez-Ponce R, Guengerich FP. Conformational changes during nucleotide selection by Sul-folobus solfataricus DNA polymerase Dpo4. J Biol Chem, 2009, 284(31): 21090-21099.[4] Wu EY, Beese LS. The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an “ajar” intermediate conformation in the nucleotide selection mechanism. J Biol Chem, 2011, 286(22): 19758-19767.[5] Vasquez-Del Carpio R, Silverstein TD, Lone S, Swan MK, Choudhury JR, Johnson RE, Prakash S, Prakash L, Ag-garwal AK. Structure of human DNA polymerase κ in-serting dATP opposite an 8-OxoG DNA lesion. PLoS One, 2009, 4(6): e5766.[6] Pence MG, Choi JY, Egli M, Guengerich FP. Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase ι. J Biol Chem, 2010, 285(52): 40666-40672.[7] DeCarlo L, Gowda ASP, Suo ZC, Spratt TE. Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV. Biochemistry, 2008, 47(31): 8157-8164.[8] Donny-Clark K, Shapiro R, Broyde S. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase iota: Hoog-steen or Watson-Crick base pairing? Biochemistry, 2009, 48(1): 7-18.[9] Hassan AEA, Sheng J, Zhang W, Huang Z. High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc, 2010, 132(7): 2120-2121.[10] Pallan PS, Egli M. Pairing geometry of the hydrophobic thymine analogue 2,4-difluorotoluene in duplex DNA as analyzed by X-ray crystallography. J Am Chem Soc, 2009, 131(35): 12548-12549.[11] Watts JK, Martín-Pintado N, Gómez-Pinto I, Schwartzen-truber J, Portella G, Orozco M, González C, Damha MJ. Differential stability of 2'F-ANA·RNA and ANA·RNA hybrid duplexes: roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility. Nucleic Acids Res, 2010, 38(7): 2498-2511.[12] Obeid S, Blatter N, Kranaster R, Schnur A, Diederichs K, Welte W, Marx A. Replication through an abasic DNA le-sion: structural basis for adenine selectivity. EMBO J, 2010, 29(10): 1738-1747.[13] Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science, 2005, 309(5744): 2219-2222.[14] Bebenek K, Pedersen LC, Kunkel TA. Replication infidelity via a mismatch with Watson-Crick geometry. Proc Natl Acad Sci USA, 2011, 108(5): 1862-1867.[15] Brown JA, Suo ZC. Elucidating the kinetic mechanism of DNA polymerization catalyzed by Sulfolobus solfa-taricus P2 DNA polymerase B1. Biochemistry, 2009, 48(31): 7502-7511.[16] Trzemecka A, Jacewicz A, Carver GT, Drake JW, Bebenek A. Reversal of a mutator activity by a nearby fidelity-neutral substitution in the RB69 DNA polymerase binding pocket. J Mol Biol, 2010, 404(5): 778-793.[17] Pursell ZF, Isoz I, Lundström EB, Johansson E, Kunkel TA. Regulation of B family DNA polymerase fidelity by a conserved active site residue: characterization of M644W, M644L and M644F mutants of yeast DNA polymerase ε. Nucl Acids Res, 2007, 35(9): 3076-3086.[18] Kim TW, Delaney JC, Essigmann JM, Kool ET. Probing the active site tightness of DNA polymerase in subang-strom increments. Proc Natl Acad Sci USA, 2005, 102(44): 15803-1588.[19] Jin ZN, Johnson KA. Role of a GAG hinge in the nucleo-tide-induced conformational change governing nucle |