[1] Carpenter J, Felsot A, Goode T, Hamming M, Onstad D, Sankula S. Comparative environmental impacts of bio-technology-derived and traditional soybean, corn, and cotton crops. Council for Agricultural Science and Tech-nology, Ames, IA, 2002: 15-50.[2] Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, Hwang CH, Back K, Palmer RG, Jeong SC. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered, 2010, 101(6): 757-768.[3] Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006, 57: 405-430.[4] Holton TA, Cornish EC. Genetics and biochemistry of an-thocyanin biosynthesis. Plant Cell, 1995, 7(7): 1071-1083.[5] 张玲. 水稻紫黑色颖壳Pbh基因的遗传分析与克隆[学位论文]. 北京: 中国农业科学院, 2011.[6] 沈忠伟, 许昱, 夏犇, 李建粤. 植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用.分 子植物育种, 2008, 6(3): 542-548.[7] Xu P, Hu TT, Yang YJ, Wu XH, Wang BG, Liu YH, Qin DH, Ehlers J, Close T, Lu ZF, Li GJ. Mapping genes gov-erning flower and seedcoat color in asparagus bean (Vigna unguiculata ssp. sesquipedalis) based on single nucleotide polymorphism and simple sequence repeat markers. Hort Sci, 2011, 46(8): 1102-110.[8] Palmer RG, Pfeiffer TW, Buss GR, Kilen TC. Qualitative genetics in soybeans: improvement, production, and uses. 3rd ed. Madison (WI): ASA, CSSA, and SSSA, 2004: 137-214.[9] Bernard RL, Weiss MG. Qualitative genetics, in soybean: improvement, production and uses. Madison, WI: American Society of Agronomy, 1973, 1: 117-149.[10] Palmer RG, Kilen TC. Qualitative genetics and cytogenetics. In: Soybeans: improvement, production and uses. Madi-son, WI: American Society of Agronomy, 1987, 2: 135-209.[11] Nicholas CD, Lindstrom JT, Vodkin LO. Variation of proline rich cell wall proteins in soybean lines with antho-cyanin mutations. Plant Mol Biol, 1993, 21(1): 145-156.[12] Todd JJ, Vodkin LO. Duplications that suppress and dele-tions that restore expression from a chalcone synthase multigene family. Plant Cell, 1996, 8(4): 687-699.[13] Clough SJ, Tuteja JH, Li M, Marek LF, Shoemaker RC, Vodkin LO. Features of a 103-kb gene- rich region in soy-bean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome, 2004, 47(5): 819-831.[14] Tuteja JH, Clough SJ, Chan W C, Vodkin LO. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell, 2004, 16(4): 819-835.[15] Zabala G, Vodkin L. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3’ hy- droxylase. Genetics, 2003, 163(1): 295-309.[16] Toda K, Yang DJ, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50(2): 187-196.[17] Buzzetl RI, Buttery BR, MacTavish DC. Biochemical ge-netics of black pigmentation of soybean seed. J He-red, 1987, 78(1): 53-54.[18] Todd JJ, Vodkin LO. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol, 1993, 102(2): 663-670.[19] Lee JH, Kang NS, Shin SO, Shin SH, Lim SG, Suh DY, Baek IY, Park KY, Ha TJ. Characterization of anthocyanins in the black soybean (Glycine max L.) by HPLC- DAD-ESI/MS analysis. Food Chem, 2009, 112(1): 226-231.[20] Senda M, Kurauchi T, Kasai A, Ohnishi S. Suppressive mechanism of seed coat pigmentation in yellow soybean. Breed Sci, 2012, 61(5): 523-530.[21] Wang CS, Todd JJ, Vodkin LO. Chalcone synthase mRNA and activity are reduced in yellow soybean seed coats with dominant I alleles. Plant Physiol, 1994, |