[1] Brunzell JD, Deeb SS. Familial lipoprotein lipase deficiency, apo C-II deficiency, and hepatic lipase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill, 2001: 2789-2816.[2] Olivecrona T, Olivecrona G. The ins and outs of adipose tissue. In: Ehnholm C, ed. Cellular Lipid Metabolism. Springer: Berlin Heidelberg, 2009: 315-369.[3] Wang H, Eckel RH. Lipoprotein lipase: from gene to obe-sity. Am J Physiol Endocrinol Metab, 2009, 297(2): E271- E288.[4] Davies BS, Beigneux AP, Fong LG, Young SG. New wrinkles in lipoprotein lipase biology. Curr Opin Lipidol, 2012, 23(1): 35-42.[5] 杨宇虹, 穆云祥, 赵郁, 刘新宇, 赵莉莉, 汪军梅, 解用虹. 中国人群脂蛋白脂肪酶基因突变与高脂血症的相关性研究. 遗传学报, 2007, 34(5): 381-391.[6] 崔璐璐, 王敏, 黄青阳. 脂蛋白酯酶基因Pvu II多态与中国人高脂血症和冠心病的Meta分析. 遗传, 2010, 32(10): 1031-1036.[7] Goldberg IJ, Soprano DR, Wyatt ML, Vanni TM, Kirchgessner TG, Schotz MC. Localization of lipoprotein lipase mRNA in selected rat tissues. J Lipid Res, 1989, 30(10): 1569-1577.[8] Bessesen DH, Richards CL, Etienne J, Goers JW, Eckel RH. Spinal cord of the rat contains more lipoprotein lipase than other brain regions. J Lipid Res, 1993, 34(2): 229-238.[9] Davies BS, Beigneux AP, Barnes RH II, Tu YP, Gin P, Weinstein MM, Nobumori C, Nyrén R, Goldberg I, Olive-crona G, Bensadoun A, Young SG, Fong LG. GPIHBP1 is responsible for the entry of lipoprotein lipase into capil-laries. Cell Metab, 2010, 12(1): 42-52.[10] Bengtsson G, Olivecrona T. Lipoprotein lipase: mechanism of product inhibition. Eur J Biochem, 1980, 106(2): 557-562.[11] Ahn J, Lee H, Chung CH, Ha T. High fat diet induced downregulation of microRNA-467b increased lipoprotein lipase in hepatic steatosis. Biochem Biophys Res Commun, 2011, 414(4): 664-669.[12] Chen T, Li Zb, Tu J, Zhu WG, Ge JH, Zheng XY, Yang L, Pan XP, Yan H, Zhu JH. MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated den-dritic cells. FEBS Lett, 2011, 585(4): 657-663.[13] Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M, Koster G, Prabakaran T, Nilsson SK, Kjaergaard MM, Bakke O, Nykjær A, Olivecrona G, Petersen CM, Nielsen MS. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J Cell Sci, 2011, 124(7): 1095-1105.[14] Perdomo G, Kim DH, Zhang T, Qu S, Thomas EA, Toledo FG, Slusher S, Fan Y, Kelley DE, Dong HH. A role of apolipoprotein D in triglyceride metabolism. J Lipid Res, 2010, 51(6): 1298-1311.[15] Lee JH, Giannikopoulos P, Duncan SA, Wang J, Johansen CT, Brown JD, Plutzky J, Hegele RA, Glimcher LH, Lee AH. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med, 2011, 17(7): 812-815.[16] Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG. Glycosylphosphatidylinositol-anchored high-density lipo-protein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab, 2007, 5(4): 279-291.[17] Young SG, Davies BS, Fong LG, Gin P, Weinstein MM, Bensadoun A, Beigneux AP. GPIHBP1: an endothelial cell molecule important for the lipolytic processing of chy-lomicrons. Curr Opin Lipidol, 2007, 18(4): 389-396.[18] Ioka RX, Kang MJ, Kamiyama S, Kim DH, Magoori K, Kamataki A, Ito Y, Takei YA, Sasaki M, Suzuki T, Sasano H, Takahashi S, Sakai J, Fujino T, Yamamoto TT. Ex-pression cloning and characterization of a novel glyco-sylphosphatidylinositol-anchored high density lipopro-tein-binding protein, GPI-HBP1. J Biol Chem, 2003, 278(9): 7344-7349.[19] Beigneux AP, Weinstein MM, Davies BS, Gin P, Bensa-doun A, Fong LG, Young SG. GPIHBP1 and lipolysis: an update. Curr Opin Lipidol, 2009, 20(3): 211-216.[20] Beigne |