[1] Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription. J Struct Biol, 2000, 129(2-3): 102-122.[2] Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J, 2007, 13(1): 9-16.[3] Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood), 2004, 229(10): 988-995.[4] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Morgan MJ. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.[5] Irizarry RA, Ladd-Acosta C, Wen B, Wu ZJ, Montano C, Onyango P, Cui HM, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet, 2009, 41(2): 178-186.[6] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271): 315-322.[7] Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 2009, 27(4): 361-368.[8] Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet, 2011, 20(4): 670- 680.[9] Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 2012, 148(4): 816-831.[10] 杨晓丹, 韩威, 刘峰. DNA甲基化与脊椎动物胚胎发育. 遗传, 2012, 34(9): 1108-1113.[11] Jones PA, Liang GN. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet, 2009, 10(11): 805-811.[12] Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res, 2003, 31(9): 2305-2312.[13] Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet, 2000, 24(1): 88-91.[14] Challen GA, Sun DQ, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu HC, Xi YX, Liang SD, Lu Y, Darlington GJ, Meissner A, Issa JPJ, Godley LA, Li W, Goodell MA. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet, 2012, 44(1): 23-31.[15] Karagianni P, Amazit L, Qin J, Wong J. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol, 2008, 28(2): 705-717.[16] Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science, 2007, 317(5845): 1760-1764.[17] Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009, 12(2): 133-139.[18] Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002, 277(40): 37741-37746.[19] Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics, 2007, 277(5): 589-600.[20] Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell, 2006, 18(1): 104-118.[21] Navarro-Martín L, Viñas J, Ribas L, Díaz N, Guti&eacut |