[1] Rosenfeld JA, Ballif BC, Lucas A, Spence EJ, Powell C, Aylsworth AS, Torchia BA, Shaffer LG. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS One, 2009, 4(8): e6568.[2] Brugmann SA, Powder KE, Young NM, Goodnough LH, Hahn SM, James AW, Helms JA, Lovett M. Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders. Hum Mol Genet, 2010, 19(5): 920-930.[3] Depew MJ, Compagnucci C. Tweaking the hinge and caps: testing a model of the organization of jaw. J Exp Zool B Mol Dev Evol, 2008, 310B(4): 315-335.[4] Ahn HJ, Park Y, Kim S, Park HC, Seo SK, Yeo SY, Geum D. The expression profile and function of Satb2 in zebrafish embryonic development. Mol Cells, 2010, 30(4): 377-382[5] Dobreva G, Dambacher J, Grosschedl R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin μ gene expression. Genes Dev, 2003, 17(24): 3048-3061.[6] Hassan MQ, Gordon JAR, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA, 2010, 107(46): 19879-19884.[7] Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I, Karsenty G, Grosschedl R. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell, 2006, 125(5): 971-986.[8] Mao XY, Tang SJ. Effects of phenytoin on Satb2 and Hoxa2 gene expressions in mouse embryonic craniofacial tissue. Biochem Cell Biol, 2010, 88(4): 731-735.[9] Ellies DL, Krumlauf R. Bone formation: The nuclear matrix reloaded. Cell, 2006, 125(5): 840-842.[10] Yu VWC, Akhouayri O, St-Arnaud R. FIAT is co-expressed with its dimerization target ATF4 in early osteoblasts, but not in osteocytes. Gene Expr Patterns, 2009, 9(5): 335-340.[11] Britanova O, Depew MJ, Schwark M, Thomas BL, Miletich I, Sharpe P, Tarabykin V. Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development. Am J Hum Genet, 2006, 79(4): 668-678.[12] Fitzpatrick DR, Carr IM, McLaren L, Leek JP, Wightman P, Williamson K, Gautier P, McGill N, Hayward C, Firth H, Markham AF, Fantes JA, Bonthron DT. Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum Mol Genet, 2003, 12(19): 2491-2501.[13] Vieira AR, Avila JR, Daack-Hirsch S, Dragan E, Félix TM, Rahimov F, Harrington J, Schultz RR, Watanabe Y, Johnson M, Fang J, O'Brien SE, Orioli IM, Castilla EE, FitzPatrick DR, Jiang RL, Marazita ML, Murray JC. Medical sequencing of candidate genes for nonsyndromic cleft lip and palate. PLoS Genet, 2005, 1(6): e64.[14] van Buggenhout G, van Ravenswaaij-Arts C, Mc Maas N, Thoelen R, Vogels A, Smeets D, Salden I, Matthijs G, Fryns JP, Vermeesch JR. The del(2)(q32.2q33) deletion syndrome de?ned by clinical and molecular characterization of four pa-tients. Eur J Med Genet, 2005, 48(3): 276-289.[15] Carter TC, Molloy AM, Pangilinan F, Troendle JF, Kirke PN, Conley MR, Orr DJA, Earley M, McKiernan E, Lynn EC, Doyle A, Scott JM, Brody LC, Mills JL. Testing reported associations of genetic risk factors for oral clefts in a large Irish study population. Birth Defects Res A Clin Mol Teratol, 2010, 88(2): 84-93.[16] Urquhart J, Black GCM, Clayton-Smith J. 4.5 Mb microdeletion in chromosome band 2q33.1 associated with learning disability and cleft palate. Eur J Med Genet, 2009, 52(6): 454-457.[17] Beaty TH, Hetmanski JB, Fallin MD, Park JW, Sull JW, McIntosh I, Liang KY, VanderKolk CA, Redett RJ, Boyadjiev SA, Jabs EW, Chong SS, Cheah FSH, Wu-Chou YH, Chen PK, Chiu YF, Yeow V, Ng ISL, Cheng J, Huang S, Ye X, Wang H, Ingersoll R, Scott AF. Analysis of candidate genes on chromosome 2 in oral cleft case-parent trios from three populations. Hum Genet, 2006, 120(4): 501-518.[18] Cho JY, Lee WB, Kim HJ, Woo KM, Baek JH, Choi JY, Hur CG, Ryoo HM. Bone-related gene profiles in developing calvaria. Gene, 2006, 372: 71-81.[19] Coussens AK, Hughes IP, Wilkinson CR, Morris CP, Anderson PJ, Powell BC, van Daal A. Identi?cation of genes differentially expressed by prematurely fused human sutures using a novel in vivo-in vitro approach. Differentiation, 2008, 76(5): 531-545.[20] Tegay DH, Chan KK, Leung L, Wang C, Burkett S, Stone G, Stanyon R, Toriello HV, Hatchwell E. Toriello-Carey syndrome in a patient with a de novo balanced translocation [46,XY,t(2;14)(q33;q22)] interrupting SATB2. Clin Genet, 2009, 75(3): 259-264.[21] Szemes M, Gyorgy A, Paweletz C, Dobi A, Agoston DV. Isolation and characterization of SATB2, a novel AT-rich DNA binding protein expressed in development- and cell-speci?c manner in the rat Brain. Neurochem Res, 2006, 31(2): 237-246.[22] Britanova O, Akopov S, Lukyanov S, Gruss P, Tarabykin V. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur J Neurosci, 2005, 21(3): 658-668.[23] Gyorgy AB, Szemes M, de Juan Romero C, Tarabykin V, Agoston DV. SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur J Neurosci, 2008, 27(4): 865-873.[24] Sasaki T, Nishihara H, Hirakawa M, Fujimura K, Tanaka M, Kokubo N, Kimura-Yoshida C, Matsuo I, Sumiyama K, Saitou N, Shimogori T, Okada N. Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci USA, 2008, 105(11): 4220-4225.[25] Moldrich RX, Gobius I, Pollak T, Zhang JY, Ren TB, Brown L, Mori S, de Juan Romero C, Britanova O, Tarabykin V, Richards LJ. Molecular regulation of the developing commissural plate. J Comp Neurol, 2010, 518(18): 3645-3661.[26] Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci, 2007, 27(50): 13624-13634.[27] Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Fariñas I, Grosschedl R, McConnell SK. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron, 2008, 57(3): 364-377.[28] Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, Šestan N, Molnár Z, Tarabykin V. Satb2 is a postmitotic determinant for upper-layer neuron speci?cation in the neocortex. Neuron, 2008, 57(3): 378-392.[29] Leone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK. The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol, 2008, 18(1): 28-35.[30] Chen B, Wang SS, Hattox AM, Rayburn H, Nelson SB, McConnell SK. The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci USA, 2008, 105(32): 11382-11387.[31] Hisaoka T, Nakamura Y, Senba E, Morilawa Y. The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience, 2010, 166(2): 551-563.[32] Maeda N, Onimura M, Ohmoto M, Inui T, Yamamotob T, Matsumoto I, Abe K. Spatial differences in molecular characteristics of the pontine parabrachial nucleus. Brain Res, 2009, 1296: 24-34.[33] Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature, 2008, 452(7184): 187-193.[34] Iorns E, Hnatyszyn HJ, Seo P, Clarke J, Ward T, Lippman M. The role of SATB1 in breast cancer pathogenesis. J Natl Cancer Inst, 2010, 102(16): 1284-1296.[35] Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int, 2009, 9(1):18.[36] Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, Kishimoto H, Gresh L, Kohwi-Shigematsu T, Kenner L, Wutz A. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embry-onic cells. Dev Cell, 2009, 16(4): 507-516.[37] Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell, 2006, 9(1): 45-56.[38] Chung J, Lau J, Cheng LS, Grant RI, Robinson F, Ketela T, Reis PR, Roche O, Kamel-Reid S, Moffat J, Ohh M, Perez-Ordonez B, Kaplan DR, Irwin MS. SATB2 augments ΔNp63α in head and neck squamous cell carcinoma. EMBO Rep, 2010, 11(10): 777-783.[39] Wang S, Zhou J, Wang XY, Hao JM, Chen JZ, Zhang XM, Jin H, Liu L, Zhang YF, Liu JS, Ding YQ, Li JM. Down-regulated expression of SATB2 is associated with metastasis and poor prognosis in colorectal cancer. J Pathol, 2009, 219(1): 114-122. |