遗传 ›› 2014, Vol. 36 ›› Issue (5): 420-430.doi: 10.3724/SP.J.1005.2014.0420
赵帆, 杨泽
收稿日期:
2013-12-09
修回日期:
2014-01-14
出版日期:
2014-05-20
发布日期:
2014-05-25
通讯作者:
杨泽, 研究员, 博士生导师, 研究方向:医学遗传学。E-mail: yang_ze@sina.com
E-mail:yang_ze@sina.com
作者简介:
赵帆, 硕士研究生, 专业方向:医学遗传学。E-mail: zhaofan1219@163.com
基金资助:
国家自然科学基金项目(编号:30972709, 81061120527, 81241082), 北京医院重大基金项目(编号:BJ-2010-30), 卫生部部属医院临床学科重点项目(编号:01020101), 卫生部行业基金项目(编号:201302008)和科技部十二五支撑计划项目(编号:2012BAI10B01)资助
Fan Zhao, Ze Yang
Received:
2013-12-09
Revised:
2014-01-14
Online:
2014-05-20
Published:
2014-05-25
摘要:
目前认为恶性肿瘤的形成是遗传和表观遗传机制共同作用的结果。表观遗传机制包括DNA甲基化、组蛋白修饰和miRNA。DNA异常甲基化(高甲基化和低甲基化)是前列腺癌最具特征的表观遗传改变, 它能够导致基因组不稳定, 调控基因的异常表达, 在前列腺癌的形成和发展中起到重要作用。同时, DNA甲基化作为前列腺癌表观遗传研究的一个热点, 为临床前列腺癌的早期诊断、预后评估及药物治疗提供新的方法和途径。文章根据前列腺癌的DNA高甲基化和低甲基化的最新研究成果阐述了前列腺癌形成的表观遗传学机制, 并且讨论了它们在前列腺癌临床转化方面的最新研究进展。
赵帆, 杨泽. 前列腺癌的DNA甲基化及其临床应用[J]. 遗传, 2014, 36(5): 420-430.
Fan Zhao, Ze Yang. DNA Methylation of Prostate Cancer and Clinical Application[J]. HEREDITAS(Beijing), 2014, 36(5): 420-430.
[1] Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, . Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859): 2095–2128. <\p> [2] Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev, 2009, 23(7): 781–783. <\p> [3] Bird AP. CpG-rich islands and the function of DNA methylation. Nature, 1986, 321(6067): 209–213. <\p> [4] Cooper DN, Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet, 1989, 83(2): 181–188. <\p> [5] Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L, Niu YJ, Chang C. Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2′-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem, 2012, 287(47): 39954–39966. <\p> [6] Daniūnaite K, Berezniakovas A, Jankevi?ius F, Laurinavi?ius A, Lazutka JR, Jarmalaite S. Frequent methylation of RASSF1 and RARB in urine sediments from patients with early stage prostate cancer. Medicina (Kaunas), 2011, 47(3): 147–153. <\p> [7] Tang DL, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, Trudeau S, Rundle A, Belinsky SA, Rybicki BA. Methylation of the RARB gene increases prostate cancer risk in black Americans. J Urol, 2013, 190(1): 317–324. <\p> [8] Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R. Clinical significance of promoter hypermethylation of ERbeta and RARbeta2 in tumor and serum DNA in Indian breast cancer patients. Ann Surg Oncol, 2012, 19(9): 3107–3115. <\p> [9] Feng QH, Hawes SE, Stern JE, Wiens L, Lu H, Dong ZM, Jordan CD, Kiviat NB, Vesselle H. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev, 2008, 17(3): 645–654. <\p> [10] 王长春, 毛伟敏, 凌志强. 维甲酸受体β2和p16INK4α基因甲基化在食管鳞癌患者肿瘤组织和外周血中的表达. 中华肿瘤杂志, 2012, 34(6): 441–445. <\p> [11] Brait M, Loyo M, Rosenbaum E, Ostrow KL, Markova A, Papagerakis S, Zahurak M, Goodman SM, Zeiger M, Sidransky D, Umbricht CB, Hoque MO. Correlation between BRAF mutation and promoter methylation of TIMP3, RARbeta2 and RASSF1A in thyroid cancer. Epigenetics, 2012, 7(7): 710–719. <\p> [12] Chan MW, Chan LW, Tang NL, Tong JH, Lo KW, Lee TL, Cheung HY, Wong WS, Chan PS, Lai FM, To KF. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res, 2002, 8(2): 464–470. <\p> [13] Miladi-Abdennadher I, Abdelmaksoud-Damak R, Ayadi L, Khabir A, Frikha F, Kallel L, Amouri A, Frikha M, Sellami- Boudawara T, Gargouri A, Mokdad-Gargouri R. Hypermethylation of RARbeta2 correlates with high COX-2 expression and poor prognosis in patients with colorectal carcinoma. Tumour Biol, 2010, 31(5): 503–511. <\p> [14] Piperi C, Themistocleous MS, Papavassiliou GA, Farmaki E, Levidou G, Korkolopoulou P, Adamopoulos C, Papavassiliou AG. High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: association with histopathological characteristics, inflammatory mediators and clinical outcome. Mol Med, 2010, 16(1–2): 1–9. <\p> [15] Fendri A, Masmoudi A, Khabir A, Sellami-Boudawara T, Daoud J, Frikha M, Ghorbel A, Gargouri A, Mokdad- Gargouri R. Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther, 2009, 8(5): 444–451. <\p> [16] Wolff DW, Xie Y, Deng CS, Gatalica Z, Yang MJ, Wang B, Wang JC, Lin MF, Abel PW, Tu YP. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen- independent prostate cancer cell growth. Int J Cancer, 2012, 130(7): 1521–1531. <\p> [17] Lee BH, Taylor MG, Robinet P, Smith JD, Schweitzer J, Sehayek E, Falzarano SM, Magi-Galluzzi C, Klein EA, Ting AH. Dysregulation of cholesterol homeostasis in human prostate cancer through loss of ABCA1. Cancer Res, 2013, 73(3): 1211–1218. <\p> [18] Kilinc D, Ozdemir O, Ozdemir S, Korgali E, Koksal B, Uslu A, Gultekin YE. Alterations in promoter methylation status of tumor suppressor HIC1, SFRP2, and DAPK1 genes in prostate carcinomas. DNA Cell Biol, 2012, 31(5): 826–832. <\p> [19] Zheng JH, Wang JL, Sun XQ, Hao MG, Ding T, Xiong D, Wang XM, Zhu Y, Xiao G, Cheng GC, Zhao MZ, Zhang J, Wang JH. HIC1 modulates prostate cancer progression by epigenetic modification. Clin Cancer Res, 2013, 19(6): 1400–1410. <\p> [20] Steiner I, Jung K, Schatz P, Horns T, Wittschieber D, Lein M, Dietel M, Erbersdobler A. Gene promoter methylation and its potential relevance in early prostate cancer diagnosis. Pathobiology, 2010, 77(5): 260–266. <\p> [21] Liu LY, Kron KJ, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J, Ozcelik H, Fleshner NE, Briollais L, Van Der Kwast TH, Bapat B. Association of tissue promoter methylation levels of APC, TGFbeta2, HOXD3 and RASSF1A with prostate cancer progression. Int J Cancer, 2011, 129(10): 2454–2462. <\p> [22] Yee DS, Tang YX, Li XS, Liu ZB, Guo Y, Ghaffar S, Mcqueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi XL. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer, 2010, 9: 162. <\p> [23] Li ZS, Li WJ, Xie J, Wang Y, Tang AF, Li XX, Ye JX, Gui YT, Cai ZM. Epigenetic inactivation of PCDH10 in human prostate cancer cell lines. Cell Biol Int, 2011, 35(7): 671–676. <\p> [24] Perry AS, O'hurley G, Raheem OA, Brennan K, Wong S, O'grady A, Kennedy AM, Marignol L, Murphy TM, Sullivan L, Barrett C, Loftus B, Thornhill J, Hewitt SM, Lawler M, Kay E, Lynch T, Hollywood D. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer, 2013, 132(8): 1771–1780. <\p> [25] Xu J, Shetty PB, Feng WW, Chenault C, Bast RC Jr, Issa JP, Hilsenbeck SG, Yu YH. Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer, 2012, 12: 243. <\p> [26] Gao TY, Wang SK, He BS, Pan YQ, Song GQ, Gu L, Chen LP, Nie ZL, Xu YQ, Li R. The association of RAS association domain family Protein1A (RASSF1A) methylation states and bladder cancer risk: a systematic review and meta-analysis. PLoS ONE, 2012, 7(11): e48300. <\p> [27] Feng Y, Xue WJ, Li P, Sha ZY, Huang H, Rui L, Li HX, Mao QS. RASSF1A hypermethylation is associated with aflatoxin B1 and polycyclic aromatic hydrocarbon exposure in hepatocellular carcinoma. Hepatogastroenterology, 2012, 59(118): 1883–1888. <\p> [28] Wang J, Wang BC, Chen X, Bi JW. The prognostic value of RASSF1A promoter hypermethylation in non-small cell lung carcinoma: a systematic review and meta-analysis. Carcinogenesis, 2011, 32(3): 411–416. <\p> [29] Bondurant AE, Huang ZQ, Whitaker RS, Simel LR, Berchuck A, Murphy SK. Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer. Gynecol Oncol, 2011, 123(3): 581–587. <\p> [30] Schayek H, Bentov I, Jacob-Hirsch J, Yeung C, Khanna C, Helman LJ, Plymate SR, Werner H. Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer. Horm Metab Res, 2012, 44(7): 511–519. <\p> [31] Sullivan L, Murphy TM, Barrett C, Loftus B, Thornhill J, Lawler M, Hollywood D, Lynch T, Perry AS. IGFBP7 promoter methylation and gene expression analysis in prostate cancer. J Urol, 2012, 188(4): 1354–1360. <\p> [32] Kanwal R, Pandey M, Bhaskaran N, Maclennan GT, Fu PF, Ponsky LE, Gupta S. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol Carcinog, 2014, 53(1): 8–18. <\p> [33] Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E, Alves P, Tewari AK, Gerstein MB, Beltran H, Melnick AM, Elemento O, Demichelis F, Rubin MA. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res, 2013, 73(3): 1232–1244. <\p> [34] Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, Deng GR, Dahiya R. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res, 2013, 19(1): 73–84. <\p> [35] Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, Chang I, Yamamura S, Tanaka Y, Deng G, Dahiya R. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res, 2012, 72(24): 6435–6446. <\p> [36] Hulf T, Sibbritt T, Wiklund ED, Patterson K, Song JZ, Stirzaker C, Qu W, Nair S, Horvath LG, Armstrong NJ, Kench JG, Sutherland RL, Clark SJ. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene, 2013, 32(23): 2891–2899. <\p> [37] Li YW, Kong DJ, Ahmad A, Bao B, Dyson G, Sarkar FH. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics, 2012, 7(8): 940– 949. <\p> [38] Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, Devere White RW. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene, 2013, 32(35): 4130–4138. <\p> [39] Borno ST, Fischer A, Kerick M, Falth M, Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, Isau M, Rohr C, Wunderlich A, Timmermann B, Claus R, Plass C, Graefen M, Simon R, Demichelis F, Rubin MA, Sauter G, Schlomm T, Sultmann H, Lehrach H, Schweiger MR. Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2- dependent mechanism with miR-26a hypermethylation. Cancer Discov, 2012, 2(11): 1024–1035. <\p> [40] Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Agro E, Levine AJ, Melino G, Bernardini S, Candi E. DNA methylation silences miR-132 in prostate cancer. Oncogene, 2013, 32(1): 127–134. <\p> [41] Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng GR, Tanaka Y, Dahiya R. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis, 2011, 32(5): 772–778. <\p> [42] Desotelle J, Truong M, Ewald J, Weeratunga P, Yang B, Huang W, Jarrard D. CpG island hypermethylation frequently silences FILIP1L isoform 2 expression in prostate cancer. J Urol, 2013, 189(1): 329–335. <\p> [43] Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH, Chu CS, Jeng YM, Chen YT, Lin FM, Huang HD, Lu YY, Teng YC, Lin ST, Lin RK, Tang FM, Lee SB, Hsu HM, Yu JC, Hsiao PW, Juan LJ. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep, 2012, 2(3): 568–579. <\p> [44] Ummanni R, Jost E, Braig M, Lohmann F, Mundt F, Barett C, Schlomm T, Sauter G, Senff T, Bokemeyer C, Sultmann H, Meyer-Schwesinger C, Brummendorf TH, Balabanov S. Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation. Mol Cancer, 2011, 10: 129. <\p> [45] Olkhov-Mitsel E, Van Der Kwast T, Kron KJ, Ozcelik H, Briollais L, Massey C, Recker F, Kwiatkowski M, Fleshner NE, Diamandis EP, Zlotta AR, Bapat B. Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics, 2012, 7(9): 1037–1045. <\p> [46] Kim YJ, Yoon HY, Kim SK, Kim YW, Kim EJ, Kim IY, Kim WJ. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling. Clin Cancer Res, 2011, 17(13): 4523–4530. <\p> [47] Vinarskaja A, Goering W, Ingenwerth M, Schulz WA. ID4 is frequently downregulated and partially hypermethylated in prostate cancer. World J Urol, 2012, 30(3): 319–325. <\p> [48] Gao TY, He BS, Pan YQ, Li R, Xu YQ, Chen LP, Nie ZL, Gu L, Wang SK. The association of retinoic acid receptor beta2(RARbeta2) methylation status and prostate cancer risk: a systematic review and meta-analysis. PLoS ONE, 2013, 8(5): e62950. <\p> [49] Dumache R, Puiu M, Minciu R, Bardan R, David D, Tudor A, Bumbacila B. Retinoic acid receptor beta2 (RARbeta2): nonivasive biomarker for distinguishing malignant versus benign prostate lesions from bodily fluids. Chirurgia (Bucur), 2012, 107(6): 780–784. <\p> [50] Yoon HY, Kim YW, Kang HW, Kim WT, Yun SJ, Lee SC, Kim WJ, Kim YJ. Pyrosequencing analysis of APC methylation level in human prostate tissues: A molecular marker for prostate cancer. Korean J Urol, 2013, 54(3): 194–198. <\p> [51] Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med, 2012, 1(2): 176–186. <\p> [52] Yaqinuddin A, Qureshi SA, Pervez S, Bashir MU, Nazir R, Abbas F. Frequent DNA hypermethylation at the RASSF1A and APC gene loci in prostate cancer patients of pakistani origin. ISRN Urol, 2013, 627249. <\p> [53] 刘岗, 殷波, 宋永胜. 前列腺癌组织RASSF2基因甲基化及蛋白表达的检测及意义. 中华男科学杂志, 2013, 19(2): 107–110. <\p> [54] Dansranjavin T, Wagenlehner F, Gattenloehner S, Steger K, Weidner W, Dammann R, Schagdarsurengin U. Epigenetic down regulation of RASSF10 and its possible clinical implication in prostate carcinoma. Prostate, 2012, 72(14): 1550–1558. <\p> [55] Truong M, Yang B, Wagner J, Kobayashi Y, Rajamanickam V, Brooks J, Jarrard DF. Even-skipped homeobox 1 is frequently hypermethylated in prostate cancer and predicts PSA recurrence. Br J Cancer, 2012, 107(1): 100–107. <\p> [56] Liu WW, Gong J, Hu J, Hu TH, Sun YF, Du JH, Sun CY, Guan M, Jiang HW, Lu Y. Quantitative assessment of AKAP12 promoter methylation in human prostate cancer using methylation-sensitive high-resolution melting: correlation with Gleason score. Urology, 2011, 77(4): 1006.e1–1006.e7. <\p> [57] Sørensen KD, Abildgaard MO, Haldrup C, Ulhøi BP, Kristensen H, Strand S, Parker C, Høyer S, Borre M, Ørntoft TF. Prognostic significance of aberrantly silenced ANPEP expression in prostate cancer. Br J Cancer, 2013, 108(2): 420–428. <\p> [58] Chiam K, Centenera MM, Butler LM, Tilley WD, Bianco- Miotto T. GSTP1 DNA methylation and expression status is indicative of 5-aza-2'-deoxycytidine efficacy in human prostate cancer cells. PLoS ONE, 2011, 6(9): e25634. <\p> [59] Wu T, Giovannucci E, Welge J, Mallick P, Tang WY, Ho SM. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br J Cancer, 2011, 105(1): 65–73. <\p> [60] Mitsui Y, Shiina H, Hiraki M, Arichi N, Hiraoka T, Sumura M, Honda S, Yasumoto H, Igawa M. Tumor suppressor function of PGP9. 5 is associated with epigenetic regulation in prostate cancer--novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prev, 2012, 21(3): 487–496. <\p> [61] Vasiljevi? N, Ahmad AS, Beesley C, Thorat MA, Fisher G, Berney DM, Møller H, Yu Y, Lu YJ, Cuzick J, Foster CS, Lorincz AT. Association between DNA methylation of HSPB1 and death in low Gleason score prostate cancer. Prostate Cancer Prostatic Dis, 2013, 16(1): 35–40. <\p> [62] Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002, 21(35): 5400–5413. <\p> [63] De Smet C, Loriot A. DNA hypomethylation in cancer: Epigenetic scars of a neoplastic journey. Epigenetics, 2010, 5(3): <\p> [64] Yegnasubramanian S, Haffner MC, Zhang YG, Gurel B, Cornish TC, Wu ZJ, Irizarry RA, Morgan J, Hicks J, Deweese TL, Isaacs WB, Bova GS, De Marzo AM, Nelson WG. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res, 2008, 68(21): 8954–8967. <\p> [65] Paradowska A, Fenic I, Konrad L, Sturm K, Wagenlehner F, Weidner W, Steger K. Aberrant epigenetic modifications in the CTCF binding domain of the IGF2/H19 gene in prostate cancer compared with benign prostate hyperplasia. Int J Oncol, 2009, 35(1): 87–96. <\p> [66] Bhusari S, Yang B, Kueck J, Huang W, Jarrard DF. Insulin-like growth factor-2 (IGF2) loss of imprinting marks a field defect within human prostates containing cancer. Prostate, 2011, 71(15): 1621–1630. <\p> [67] Vestergaard EM, Nexø E, Torring N, Borre M, Ørntoft TF, Sørensen KD. Promoter hypomethylation and upregulation of trefoil factors in prostate cancer. Int J Cancer, 2010, 127(8): 1857–1865. <\p> [68] Yoon HY, Kim SK, Kim YW, Kang HW, Lee SC, Ryu KH, Shon HS, Kim WJ, Kim YJ. Combined hypermethylation of APC and GSTP1 as a molecular marker for prostate cancer: quantitative pyrosequencing analysis. J Biomol Screen, 2012, 17(7): 987–992. <\p> [69] Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate, 2012, 72(11): 1248–1261. <\p> [70] Trock BJ, Brotzman MJ, Mangold LA, Bigley JW, Epstein JI, Mcleod D, Klein EA, Jones JS, Wang S, Mcaskill T, Mehrotra J, Raghavan B, Partin AW. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int, 2012, 110(1): 56–62. <\p> [71] Truong M, Yang B, Livermore A, Wagner J, Weeratunga P, Huang W, Dhir R, Nelson J, Lin DW, Jarrard DF. Using the epigenetic field defect to detect prostate cancer in biopsy negative patients. J Urol, 2013, 189(6): 2335– 2341. <\p> [72] Sabatino MA, Geroni C, Ganzinelli M, Ceruti R, Broggini M. Zebularine partially reverses GST methylation in prostate cancer cells and restores sensitivity to the DNA minor groove binder brostallicin. Epigenetics, 2013, 8(6): 656–665. <\p> [73] Pandey M, Shukla S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer, 2010, 126(11): 2520–2533. <\p> [74] Agarwal S, Amin KS, Jagadeesh S, Baishay G, Rao PG, Barua NC, Bhattacharya S, Banerjee PP. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol Cancer, 2013, 12(1): 99. <\p> [75] Weng JR, Lai IL, Yang HC, Lin CN, Bai LY. Identification of Kazinol Q, a Natural Product from Formosan Plants, as an Inhibitor of DNA Methyltransferase. Phytother Res, 2014, 28(1): 49–54. <\p> [76] Lin JQ, Haffner MC, Zhang YG, Lee BH, Brennen WN, Britton J, Kachhap SK, Shim JS, Liu JO, Nelson WG, Yegnasubramanian S, Carducci MA. Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate, 2011, 71(4): 333–343. <\p> [77] Graca I, Sousa E, Baptista T, Almeida M, Ramalho- Carvalho J, Palmeira C, Henrique R, Jerónimo C. Anti- tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des, 2013. <\p> [78] Rabiau N, Trraf HK, Adjakly M, Bosviel R, Guy L, Fontana L, Bignon YJ, Bernard-Gallon DJ. miRNAs differentially expressed in prostate cancer cell lines after soy treatment. In Vivo, 2011, 25(6): 917–921. <\p> [79] Adjakly M, Bosviel R, Rabiau N, Boiteux JP, Bignon YJ, Guy L, Bernard-Gallon D. DNA methylation and soy phytoestrogens: quantitative study in DU-145 and PC-3 human prostate cancer cell lines. Epigenomics, 2011, 3(6): 795–803. <\p> [80] Khor TO, Huang Y, Wu TY, Shu LM, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol, 2011, 82(9): 1073–1078. <\p> [81] Liu ZW, Ren GL, Shangguan CY, Guo LJ, Dong ZX, Li YY, Zhang WN, Zhao L, Hou PF, Zhang Y, Wang XL, Lu J, Huang BQ. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS ONE, 2012, 7(7): e40943. <\p> [82] Dietrich D, Hasinger O, Bañez LL, Sun L, Van Leenders GJ, Wheeler TM, Bangma CH, Wernert N, Perner S, Freedland SJ, Corman JM, Ittmann MM, Lark AL, Madden JF, Hartmann A, Schatz P, Kristiansen G. Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn, 2013, 15(2): 270–279.<\p> |
[1] | 谢树高, 谢银银, 张元亮,黄秋花. miR-145靶向调控DAB2对前列腺癌PC3细胞迁移和侵袭能力的影响[J]. 遗传, 2014, 36(1): 50-57. |
[2] | 郭晓强,桂耀庭,蔡志明. 前列腺癌中TMPRSS2-ETS基因融合及机制研究进展[J]. 遗传, 2011, 33(2): 117-122. |
[3] | 俞岚,施庆国,钱晓龙,李山虎,王洪涛,王乐乐,周建光. PC-1在前列腺癌细胞中促进c-myc基因的表达[J]. 遗传, 2010, 32(4): 348-352. |
[4] | 钱晓龙,施庆国,庞博,武瑞琴,俞岚,李山虎,王洪涛,周建光. 两个新的前列腺癌相关分泌蛋白的鉴定和表达[J]. 遗传, 2010, 32(3): 235-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: