[1] Cantone I, Fisher AG. Epigenetic programming and repro-gramming during development. Nat Struct Mol Biol, 2013, 20(3): 282–289. <\p>
[2] Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature, 2013, 502(7472): 462– 471. <\p>
[3] Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency. Cell, 2013, 152(6): 1324–1343. <\p>
[4] Waddington CH. The Strategy of the Genes. London: George Allen & Unwin, 1957. <\p>
[5] Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development, 2009, 136(4): 509–523. <\p>
[6] Watanabe A, Yamada Y, Yamanaka S. Epigenetic regula-tion in pluripotent stem cells: a key to breaking the epi-genetic barrier. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1609): 20120292, doi: 10.1098/rstb.2012.0292. <\p>
[7] Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol, 2004, 6(10): 984–990. <\p>
[8] Koche RP, Smith ZD, Adli M, Gu H, Ku M, Gnirke A, Bernstein BE, Meissner A. Reprogramming factor expres-sion initiates widespread targeted chromatin remodeling. Cell Stem Cell, 2011, 8(1): 96–105. <\p>
[9] Sulewska A, Niklinska W, Kozlowski M, Minarowski L, Naumnik W, Niklinski J, Dabrowska K, Chyczewski L. DNA methylation in states of cell physiology and pathol-ogy. Folia Histochem Cytobiol, 2007, 45(3): 149–158. <\p>
[10] Bestor TH, Bourc'his D. Transposon silencing and imprint establishment in mammalian germ cells. Cold Spring Harb Symp Quant Biol, 2004, 69: 381–387. <\p>
[11] Jaenisch R, Bird A. Epigenetic regulation of gene expres-sion: how the genome integrates intrinsic and environ-mental signals. Nat Genet, 2003, 33(Suppl.): 245–254. <\p>
[12] Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 2005, 74(1): 481–514. <\p>
[13] Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science, 2007, 317(5845): 1760–1764. <\p>
[14] Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992, 69(6): 915–926. <\p>
[15] Koh KP, Rao A. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol, 2013, 25(2): 152–161. <\p>
[16] Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247–257. <\p>
[17] Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chedin F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem, 2005, 95(5): 902–917. <\p>
[18] Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erd-jument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 2007, 448(7154): 714–717. <\p>
[19] 许力凡, 张记, 田志强, 吴玉章. 表观遗传学与肿瘤干细胞. 遗传, 2013, 35(9): 1049–1057. <\p>
[20] Tsai HC, Li HL, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RW, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ, Baylin SB, Zahnow CA. Transient low doses of DNA-demethylating agents exert durable an-titumor effects on hematological and epithelial tumor cells. Cancer Cell, 2012, 21(3): 430–446. <\p>
[21] Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science, 2010, 330(6004): 622–627. <\p>
[22] Ko |