[1] Gutiérrez RA. Systems biology for enhanced plant nitrogen nutrition. Science , 2012, 336(6089): 1673-1675.
[2] Robertson GP, Vitousek PM. Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Res , 2009, 34: 97-125.
[3] Xu GH, Fan XR, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol , 2012, 63: 153-182.
[4] Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A. Steps towards an integrated view of nitrogen metabolism. J Exp Bot , 2002, 53(370): 959-970.
[5] Scheible W-R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol , 2004, 136(1): 2483-2499.
[6] Wang RC, Okamoto M, Xing XJ, Crawford NM. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol , 2003, 132(2): 556-567.
[7] Zhang HM, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science , 1998, 279(5349): 407-409.
[8] Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell , 2009, 138(6): 1184-1194.
[9] Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis . Plant J , 2009, 57(3): 426-435.
[10] Hu HC, Wang YY, Tsay YF. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J , 2009, 57(2): 264-278.
[11] Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA , 2008, 105(12): 4939-4944.
[12] iang G, He H, Yu DQ. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana . PLoS One , 2012, 7(11): e48951.
[13] Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant Cell Environ , 2012, 35(6): 1137-1155.
[14] Zhao M, Tai HH, Sun SZ, Zhang FS, Xu YB, Li WX. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One , 2012, 7(1): e29669.
[15] Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell , 2009, 136(4): 669-687.
[16] Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science , 2003, 301(5631): 336-338.
[17] Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell , 2004, 14(6): 787-799.
[18] Trindade I, Capitão C, Dalmay T, Fevereiro MP, dos Santos DM. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula . Planta , 2010, 231(3): 705-716.
[19] Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu JK. A miRNA Involved in Phosphate-Starvation Response in Arabidopsis . Curr Biol , 2005, 15(22): 2038-2043.
[20] Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana . Proc Natl Acad Sci USA , 2010, 107(9): 4477-4482.
[21] Zhao M, Ding H, Zhu JK, Zhang FS, Li WX. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis . N |