遗传 ›› 2020, Vol. 42 ›› Issue (1): 32-44.doi: 10.16288/j.yczz.19-270
收稿日期:
2019-09-05
修回日期:
2019-12-13
出版日期:
2020-01-20
发布日期:
2019-12-25
通讯作者:
吕湘
E-mail:lvxiang@pumc.edu.cn
作者简介:
杨科,博士研究生,研究方向:造血调控与三维基因组。E-mail:yangk_92@163.com
基金资助:
Ke Yang, Zheng Xue, Xiang Lv()
Received:
2019-09-05
Revised:
2019-12-13
Online:
2020-01-20
Published:
2019-12-25
Contact:
Lv Xiang
E-mail:lvxiang@pumc.edu.cn
Supported by:
摘要:
真核细胞中的染色质DNA高度折叠形成复杂的三维结构,其空间组织方式对精准调控基因的表达和细胞发挥正常功能都起着重要的作用。细胞终末分化成熟过程中形态及基因表达谱常发生显著改变,同时伴随着明显的基因组三维结构变化。本文在简单介绍三维基因组多层次组织结构(染色质领域、A/B区室、拓扑相关结构域和成环构象等)基础上,重点综述了细胞终末分化过程中三维基因组结构变化与功能调控方面的研究进展,并探讨了当前三维基因组研究在解析细胞分化成熟过程时存在的问题和前景。
杨科, 薛征, 吕湘. 细胞终末分化过程中三维基因组结构与功能调控的分子机制[J]. 遗传, 2020, 42(1): 32-44.
Ke Yang, Zheng Xue, Xiang Lv. Molecular mechanism of the 3D genome structure and function regulation during cell terminal differentiation[J]. Hereditas(Beijing), 2020, 42(1): 32-44.
[1] |
Li GL, Ruan YJ, Gu RS, Du SM . Emergence of 3D genomics. Chin Sci Bull, 2014,59(13):1165-1172.
doi: 10.1360/N972014-00163 |
李国亮, 阮一骏, 谷瑞升, 杜生明 . 起航三维基因组学研究. 科学通报, 2014,59(13):1165-1172.
doi: 10.1360/N972014-00163 |
|
[2] |
Dekker J, Rippe K, Dekker M, Kleckner N . Capturing chromosome conformation. Science, 2002,295(5558):1306-1311.
doi: 10.1126/science.1067799 pmid: 11847345 |
[3] |
Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R . Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet, 2006,38(11):1341-1347.
doi: 10.1038/ng1891 pmid: 17033624 |
[4] |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W,. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 2006,38(11):1348-1354.
doi: 10.1038/ng1896 pmid: 17033623 |
[5] |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J . Comprehensive mapping of long- range interactions reveals folding principles of the human genome. Science, 2009,326(5950):289-293.
doi: 10.1126/science.1181369 pmid: 19815776 |
[6] |
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J . Chromosome Conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 2006,16(10):1299-1309.
doi: 10.1101/gr.5571506 pmid: 16954542 |
[7] |
Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y . An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 2009,462(7269):58-64.
doi: 10.1038/nature08497 pmid: 19890323 |
[8] |
Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S, Gibbons R, Higgs DR. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet, 2014,46(2):205-212.
doi: 10.1038/ng.2871 pmid: 24413732 |
[9] |
Zheng H, Xie W . The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol, 2019,20(9):535-550.
doi: 10.1038/s41580-019-0132-4 pmid: 31197269 |
[10] |
Cremer T, Cremer M . Chromosome territories. Cold Spring Harb Perspect Biol, 2010,2(3):a003889.
doi: 10.1101/cshperspect.a003889 pmid: 20300217 |
[11] |
Macville M, Veldman T, Padilla-Nash H, Wangsa D, O'Brien P, Schröck E, Ried T. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem Cell Biol, 1997,108(4-5):299-305.
doi: 10.1007/s004180050169 pmid: 9387921 |
[12] |
Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC, Becker MS, Alt FW, Dekker J. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell, 2012,148(5):908-921.
doi: 10.1016/j.cell.2012.02.002 |
[13] |
Boyle S, Rodesch MJ, Halvensleben HA, Jeddeloh JA, Bickmore WA . Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res, 2011,19(7):901-909.
doi: 10.1007/s10577-011-9245-0 |
[14] |
Heard E, Bickmore W . The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol, 2007,19(3):311-316.
doi: 10.1016/j.ceb.2007.04.016 |
[15] |
Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo YY, Wei CL, Ruan YJ, Bieker JJ, Fraser P . Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 2010,42(1):53-61.
doi: 10.1038/ng.496 pmid: 20010836 |
[16] |
Morey C, Da Silva NR, Perry P, Bickmore WA . Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development, 2007,134(5):909-919.
doi: 10.1242/dev.02779 pmid: 17251268 |
[17] |
Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T . Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol, 2005,3(5):e157.
doi: 10.1371/journal.pbio.0030157 pmid: 15839726 |
[18] |
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P . Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013,502(7469):59-64.
doi: 10.1038/nature12593 |
[19] |
Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, Berns A, Wessels LF, van Lohuizen M, van Steensel B . Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell, 2013,154(4):914-927.
doi: 10.1016/j.cell.2013.07.018 |
[20] |
Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA, 2002,99(7):4424-4429.
doi: 10.1073/pnas.072618599 pmid: 11930003 |
[21] |
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Gräf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell, 2010,38(4):603-613.
doi: 10.1016/j.molcel.2010.03.016 pmid: 20513434 |
[22] |
Song SH, Kim A, Ragoczy T, Bender MA, Groudine M, Dean A . Multiple functions of Ldb1 required for beta-globin activation during erythroid differentiation. Blood, 2010,116(13):2356-2364.
doi: 10.1182/blood-2010-03-272252 pmid: 20570862 |
[23] |
Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P . Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 2004,36(10):1065-1071.
doi: 10.1038/ng1423 pmid: 15361872 |
[24] |
Papantonis A, Cook PR . Transcription factories: genome organization and gene regulation. Chem Rev, 2013,113(11):8683-8705.
doi: 10.1021/cr300513p pmid: 23597155 |
[25] |
Zhou GL, Xin L, Song W, Di LJ, Liu G, Wu XS, Liu DP, Liang CC . Active chromatin hub of the mouse alpha- globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol, 2006,26(13):5096-5105.
doi: 10.1128/MCB.02454-05 pmid: 16782894 |
[26] |
Faro-Trindade I, Cook PR . Transcription factories: structures conserved during differentiation and evolution. Biochem Soc Trans, 2006,34(Pt 6):1133-1137.
doi: 10.1042/BST0341133 pmid: 17073768 |
[27] |
Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA . Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci USA, 2018,115(29):E6697-E6706.
doi: 10.1073/pnas.1717730115 pmid: 29967174 |
[28] |
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B . Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012,485(7398):376-380.
doi: 10.1038/nature11082 |
[29] |
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012,485(7398):381-385.
doi: 10.1038/nature11049 |
[30] |
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G . Three- dimensional folding and functional organization principles of the drosophila genome. Cell, 2012,148(3):458-472.
doi: 10.1016/j.cell.2012.01.010 |
[31] |
Sofueva S, Yaffe E, Chan WC, Georgopoulou D, Vietri Rudan M, Mira-Bontenbal H, Pollard SM, Schroth GP, Tanay A, Hadjur S . Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J, 2013,32(24):3119-3129.
doi: 10.1038/emboj.2013.237 |
[32] |
Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J . Organization of the mitotic chromosome. Science, 2013,342(6161):948-953.
doi: 10.1126/science.1236083 |
[33] |
Smallwood A, Ren B . Genome organization and long- range regulation of gene expression by enhancers. Curr Opin Cell Biol, 2013,25(3):387-394.
doi: 10.1016/j.ceb.2013.02.005 |
[34] |
Hou C, Li L, Qin ZS, Corces VG . Gene density, transcription, and insulators contribute to the partition of the drosophila genome into physical domains. Mol Cell, 2012,48(3):471-484.
doi: 10.1016/j.molcel.2012.08.031 pmid: 23041285 |
[35] |
Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, Grosveld FG, Ren B, Wendt KS. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA, 2014,111(3):996-1001.
doi: 10.1073/pnas.1317788111 pmid: 24335803 |
[36] |
Phillips JE, Corces VG . CTCF: master weaver of the genome. Cell, 2009,137(7):1194-1211.
doi: 10.1016/j.cell.2009.06.001 pmid: 19563753 |
[37] |
Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL. Cohesin loss eliminates all loop domains. Cell, 2017,171(2):305-320 e324.
doi: 10.1016/j.cell.2017.09.026 pmid: 28985562 |
[38] |
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG,. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell, 2017,169(5): 930-944.e922.
doi: 10.1016/j.cell.2017.05.004 pmid: 28525758 |
[39] |
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F . Two independent modes of chromatin organization revealed by cohesin removal. Nature, 2017,551(7678):51-56.
doi: 10.1038/nature24281 pmid: 29094699 |
[40] |
Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O'Shaughnessy- Kirwan A, Cramard J, Faure AJ, Ralser M, Blanco E, Morey L, Sansó M, Palayret MGS, Lehner B, Di Croce L, Wutz A, Hendrich B, Klenerman D, Laue ED. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature, 2017,544(7648):59-64.
doi: 10.1038/nature21429 pmid: 28289288 |
[41] |
Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang XW. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science, 2018,362(6413): eaau1783.
doi: 10.1126/science.362.6413.494 pmid: 30361376 |
[42] |
Szabo Q, Jost D, Chang JM, Cattoni DI, Papadopoulos GL, Bonev B, Sexton T, Gurgo J, Jacquier C, Nollmann M, Bantignies F, Cavalli G. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci Adv, 2018, 4(2): eaar8082.
doi: 10.1126/sciadv.aar5255 pmid: 29507889 |
[43] |
Noordermeer D, de Laat W . Joining the loops: beta-globin gene regulation. IUBMB Life, 2008,60(12):824-833.
doi: 10.1002/iub.129 pmid: 18767169 |
[44] |
Bulger M, Groudine M . Looping versus linking: toward a model for long-distance gene activation. Genes Dev, 1999,13(19):2465-2477.
doi: 10.1101/gad.13.19.2465 pmid: 10521391 |
[45] |
Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P . Long-range chromatin regulatory interactions in vivo. Nat Genet, 2002,32(4):623-626.
doi: 10.1016/j.molcel.2019.12.027 pmid: 31954095 |
[46] |
Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei CL, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan Y . Extensive promoter- centered chromatin interactions provide a topological basis for transcription regulation. Cell, 2012,148(1-2):84-98.
doi: 10.1016/j.cell.2011.12.014 |
[47] |
Sanyal A, Lajoie BR, Jain G, Dekker J . The long-range interaction landscape of gene promoters. Nature, 2012,489(7414):109-113.
doi: 10.1038/nature11279 |
[48] |
Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, Resch W, Baek S, Pruett N, Grøntved L, Vian L, Nelson S, Zare H, Hakim O, Reyon D, Yamane A, Nakahashi H, Kovalchuk AL, Zou J, Joung JK, Sartorelli V, Wei CL, Ruan X, Hager GL, Ruan Y, Casellas R . Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell, 2013,155(7):1507-1520.
doi: 10.1016/j.cell.2013.11.039 |
[49] |
Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B . A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature, 2013,503(7475):290-294.
doi: 10.1038/nature12644 |
[50] |
Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J . Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell, 2013,154(4):801-813.
doi: 10.1016/j.cell.2013.07.034 |
[51] |
Chien R, Zeng W, Kawauchi S, Bender MA, Santos R, Gregson HC, Schmiesing JA, Newkirk DA, Kong X, Ball AR, Jr., Calof AL, Lander AD, Groudine MT, Yokomori K. Cohesin mediates chromatin interactions that regulate mammalian β-globin expression. . Biol Chem, 2011,286(20):17870-17878.
doi: 10.1074/jbc.M110.207365 pmid: 21454523 |
[52] |
Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL,. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA, 2015,112(47):E6456-E6465.
doi: 10.1073/pnas.1518552112 pmid: 26499245 |
[53] |
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, Peters JM,. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature, 2017,544(7651):503-507.
doi: 10.1038/nature22063 pmid: 28424523 |
[54] |
Palstra RJ, Simonis M, Klous P, Brasset E, Eijkelkamp B, de Laat W. Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLoS One, 2008,3(2):e1661.
doi: 10.1371/journal.pone.0001661 pmid: 18286208 |
[55] |
Mitchell JA, Fraser P . Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev, 2008,22(1):20-25.
doi: 10.1101/gad.454008 pmid: 18172162 |
[56] |
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA . Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 2012,149(6):1233-1244.
doi: 10.1016/j.cell.2012.03.051 |
[57] |
Ray J, Munn PR, Vihervaara A, Lewis JJ, Ozer A, Danko CG, Lis JT . Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock. Proc Natl Acad Sci USA, 2019,116(39):19431-19439.
doi: 10.1073/pnas.1901244116 pmid: 31506350 |
[58] |
Isoda T, Moore AJ, He Z, Chandra V, Aida M, Denholtz M, Piet van Hamburg J, Fisch KM, Chang AN, Fahl SP, Wiest DL, Murre C. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell, 2017,171(1):103-119 e118.
doi: 10.1016/j.cell.2017.09.001 pmid: 28938112 |
[59] |
Hu GQ, Cui KR, Fang DF, Hirose S, Wang X, Wangsa D, Jin WF, Ried T, Liu PT, Zhu JF, Rothenberg EV, Zhao KJ. Transformation of accessible chromatin and 3D nucleome underlies lineage commitment of early T cells. Immunity, 2018, 48(2): 227-242.e228.
doi: 10.1016/j.immuni.2018.01.013 pmid: 29466755 |
[60] |
Bunting KL, Soong TD, Singh R, Jiang Y, Béguelin W, Poloway DW, Swed BL, Hatzi K, Reisacher W, Teater M, Elemento O, Melnick AM . Multi-tiered reorganization of the genome during b cell affinity maturation anchored by a germinal center-specific locus control region. Immunity, 2016,45(3):497-512.
doi: 10.1016/j.immuni.2016.08.012 pmid: 27637145 |
[61] |
Kieffer-Kwon KR, Nimura K, Rao SSP, Xu JL, Jung S, Pekowska A, Dose M, Stevens E, Mathe E, Dong P, Huang SC, Ricci MA, Baranello L, Zheng Y, Tomassoni Ardori F, Resch W, Stavreva D, Nelson S, McAndrew M, Casellas A, Finn E, Gregory C, St Hilaire BG, Johnson SM, Dubois W, Cosma MP, Batchelor E, Levens D, Phair RD, Misteli T, Tessarollo L, Hager G, Lakadamyali M, Liu Z, Floer M, Shroff H, Aiden EL, Casellas R,. Myc regulates chromatin decompaction and nuclear architecture during B cell activation. Mol Cell, 2017,67(4):566-578 e510.
doi: 10.1016/j.molcel.2017.07.013 pmid: 28803781 |
[62] |
Phanstiel DH, Van Bortle K, Spacek D, Hess GT, Shamim MS, Machol I, Love MI, Aiden EL, Bassik MC, Snyder MP . Static and Dynamic DNA loops form AP-1-Bound activation hubs during macrophage development. Mol Cell, 2017,67(6):1037-1048 e1036.
doi: 10.1016/j.molcel.2017.08.006 pmid: 28890333 |
[63] |
Magli A, Baik J, Pota P, Cordero CO, Kwak IY, Garry DJ, Love PE, Dynlacht BD, Perlingeiro RCR . Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nat Commun, 2019,10(1):2316.
doi: 10.1038/s41467-019-10318-6 pmid: 31127120 |
[64] |
Monahan K, Horta A, Lomvardas S . LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature, 2019,565(7740):448-453.
doi: 10.1038/s41586-018-0845-0 pmid: 30626972 |
[65] |
Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A, Cavalli G. Multiscale 3D genome rewiring during mouse neural development. Cell, 2017,171(3): 557-572. e524.
doi: 10.1016/j.cell.2017.09.043 pmid: 29053968 |
[66] |
Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M, Wingett SW, Shi M, Zhao Z, Greenleaf WJ, Kundaje A, Snyder M, Chang HY, Fraser P, Khavari PA . Lineage-specific dynamic and pre-established enhancer- promoter contacts cooperate in terminal differentiation. Nat Genet, 2017,49(10):1522-1528.
doi: 10.1038/ng.3935 pmid: 28805829 |
[67] |
Ediger BN, Lim HW, Juliana C, Groff DN, Williams LT, Dominguez G, Liu JH, Taylor BL, Walp ER, Kameswaran V, Yang J, Liu C, Hunter CS, Kaestner KH, Naji A, Li C, Sander M, Stein R, Sussel L, Won KJ, May CL, Stoffers DA . LIM domain-binding 1 maintains the terminally differentiated state of pancreatic β cells. . Clin Invest, 2017,127(1):215-229.
doi: 10.1172/JCI88016 pmid: 27941246 |
[68] |
Carpenter AC, Bosselut R . Decision checkpoints in the thymus. Nat Immunol, 2010,11(8):666-673.
doi: 10.1038/ni.1887 pmid: 20644572 |
[69] |
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B . LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell, 2013,152(3):584-598.
doi: 10.1016/j.cell.2013.01.009 |
[70] |
Spilianakis CG, Flavell RA . Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol, 2004,5(10):1017-1027.
doi: 10.1038/ni1115 pmid: 15378057 |
[71] |
Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA . Interchromosomal associations between alternatively expressed loci. Nature, 2005,435(7042):637-645.
doi: 10.1038/nature03574 pmid: 15880101 |
[72] |
Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS,. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet, 2015,47(6):598-606.
doi: 10.1038/ng.3286 pmid: 25938943 |
[73] |
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014,159(7):1665-1680.
doi: 10.1016/j.cell.2014.11.021 |
[74] |
Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W. The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet, 2003,35(2):190-194.
doi: 10.1038/ng1244 pmid: 14517543 |
[75] | Zhai YN, Xu Q, Guo Y, Wu Q . Characterization of a cluster of CTCF-binding sites in a protocadherin regulatory region. Hereditas(Beijing), 2016,38(4):323-336. |
翟亚男, 许泉, 郭亚, 吴强 . 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析. 遗传, 2016,38(4):323-336. | |
[76] |
Ong CT, Corces VG . CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet, 2014,15(4):234-246.
doi: 10.1038/nrg3663 |
[77] |
Ghirlando R, Felsenfeld G . CTCF: making the right connections. Genes Dev, 2016,30(8):881-891.
doi: 10.1101/gad.277863.116 pmid: 27083996 |
[78] |
Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT . Jpx RNA activates xist by evicting CTCF. Cell, 2013,153(7):1537-1551.
doi: 10.1016/j.cell.2013.05.028 |
[79] |
Hansen AS, Hsieh THS, Cattoglio C, Pustova I, Saldaña- Meyer R, Reinberg D, Darzacq X, Tjian R. Distinct classes of chromatin loops revealed by deletion of an RNA-Binding region in CTCF. Mol Cell, 2019, 76(3): 395-411.e313.
doi: 10.1016/j.molcel.2019.07.039 pmid: 31522987 |
[80] |
Saldaña-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jácome-López K, Nora EP, Bruneau BG, Tsirigos A, Furlan-Magaril M, Skok J, Reinberg D. RNA interactions are essential for CTCF-Mediated genome organization. Mol Cell, 2019, 76(3): 412-422.e415.
doi: 10.1016/j.molcel.2019.08.015 pmid: 31522988 |
[81] |
Stadhouders R, Thongjuea S, Andrieu-Soler C, Palstra RJ, Bryne JC, van den Heuvel A, Stevens M, de Boer E, Kockx C, van der Sloot A, van den Hout M, van Ijcken W, Eick D, Lenhard B, Grosveld F, Soler E. Dynamic long- range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J, 2012,31(4):986-999.
doi: 10.1038/emboj.2011.450 |
[82] |
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S . CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011,479(7371):74-79.
doi: 10.1038/nature10442 pmid: 21964334 |
[83] |
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL, Guo YE, Hnisz D, Jaenisch R, Bradner JE, Gray NS, Young RA. YY1 is a Structural Regulator of enhancer- promoter loops. Cell, 2017, 171(7): 1573-1588. e1528.
doi: 10.1016/j.cell.2017.11.008 pmid: 29224777 |
[84] |
Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F, Kasowski M, Zhang MQ, Snyder MP . Genome-wide map of regulatory interactions in the human genome. Genome Res, 2014,24(12):1905-1917.
doi: 10.1101/gr.176586.114 |
[85] |
Ye BY, Shen WL, Wang D, Li P, Zhang Z, Shi ML, Zhang Y, Zhang FX, Zhao ZH . ZNF143 is involved in CTCF- mediated chromatin interactions by cooperation with cohesin and other partners. Mol Biol (Mosk), 2016,50(3):496-503.
doi: 10.7868/S0026898416030034 pmid: 27414788 |
[86] |
Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A, Blobel GA . Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell, 2014,158(4):849-860.
doi: 10.1016/j.cell.2014.05.050 |
[87] |
Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, Evans ZA, Kheradpour P, Mountoufaris G, Carey C, Barnea G, Kellis M, Lomvardas S . An epigenetic signature for monoallelic olfactory receptor expression. Cell, 2011,145(4):555-570.
doi: 10.1016/j.cell.2011.03.040 |
[88] |
Monahan K, Lomvardas S . Monoallelic expression of olfactory receptors. Annu Rev Cell Dev Biol, 2015,31:721-740.
doi: 10.1146/annurev-cellbio-100814-125308 pmid: 26359778 |
[89] |
Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana- Konwalski K . Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature, 2017,544(7648):110-114.
doi: 10.1038/nature21711 pmid: 28355183 |
[90] |
Darrow EM, Huntley MH, Dudchenko O, Stamenova EK, Durand NC, Sun Z, Huang SC, Sanborn AL, Machol I, Shamim M, Seberg AP, Lander ES, Chadwick BP, Aiden EL . Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc Natl Acad Sci USA, 2016,113(31):E4504-E4512.
doi: 10.1073/pnas.1609643113 pmid: 27432957 |
[91] |
Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y, Trinh V, Aznauryan E, Russell P, Cheng C, Jovanovic M, Chow A, Cai L, McDonel P, Garber M, Guttman M. Higher-order inter-chromosomal hubs shape 3D Genome organization in the nucleus. Cell, 2018, 174(3): 744-757.e724.
doi: 10.1016/j.cell.2018.05.024 pmid: 29887377 |
[92] |
Zheng M, Tian SZ, Capurso D, Kim M, Maurya R, Lee B, Piecuch E, Gong L, Zhu JJ, Li Z, Wong CH, Ngan CY, Wang P, Ruan X, Wei CL, Ruan Y . Multiplex chromatin interactions with single-molecule precision. Nature, 2019,566(7745):558-562.
doi: 10.1038/s41586-019-0949-1 pmid: 30778195 |
[1] | 王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[2] | 陈秀丽, 黄海燕, 吴强. 靶向敲除β-珠蛋白基因座控制区增强子HS2对K562细胞转录组的影响[J]. 遗传, 2022, 44(9): 783-797. |
[3] | 周聪, 周强伟, 成盛, 李国亮. CTCF在介导三维基因组形成及调控基因表达中的研究进展[J]. 遗传, 2021, 43(9): 816-821. |
[4] | 罗鑫, 宿兵. 三维基因组分析点亮人类大脑进化之谜[J]. 遗传, 2021, 43(2): 105-107. |
[5] | 刘沛峰, 吴强. CRISPR/Cas9基因编辑在三维基因组研究中的应用[J]. 遗传, 2020, 42(1): 18-31. |
[6] | 张雨, 方玉达. Cohesin结构及功能研究进展[J]. 遗传, 2020, 42(1): 57-72. |
[7] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: