遗传 ›› 2021, Vol. 43 ›› Issue (3): 240-248.doi: 10.16288/j.yczz.20-355
收稿日期:
2020-11-27
出版日期:
2021-03-16
发布日期:
2021-01-14
基金资助:
Chen Xuemei1(), Wei Yunlin1, Ji Xiuling1()
Received:
2020-11-27
Online:
2021-03-16
Published:
2021-01-14
Supported by:
摘要:
噬菌体是地球上最多的生物实体,一直被认为是细菌的天敌。然而随着基因组学和分子生物学等技术的快速发展,人们发现噬菌体与宿主之间存在微妙而复杂的关系。前噬菌体是指溶原性细菌内存在的整套噬菌体DNA基因组,广泛分布在细菌基因组中,对调节细菌宿主生理具有重要作用,如参与调节宿主的毒力、影响生物膜形成、赋予宿主免疫力等。有趣的是,前噬菌体可以通过“监听”细菌的群体感应来调节自身的溶原-裂解状态。近年来,一些细菌中由前噬菌体编码的抗CRISPR蛋白的发现引起了人们对前噬菌体研究的关注。因此,对前噬菌体的研究可以为改造宿主和前噬菌体提供基础理论参考。本文对前噬菌体的预测、分布、分类及功能进行了综述,以期为进一步研究噬菌体与宿主间的关系提供基础。
陈学梅, 魏云林, 季秀玲. 前噬菌体研究进展[J]. 遗传, 2021, 43(3): 240-248.
Chen Xuemei, Wei Yunlin, Ji Xiuling. Research progress of prophages[J]. Hereditas(Beijing), 2021, 43(3): 240-248.
[1] | Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL. Prophages mediate defense against phage infection through diverse mechanisms. ISME J , 2016, 10(12): 2854- 2866. |
[2] | Fortier LC , Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence , 2013,4(5):354- 365. |
[3] | Shen P, Chen XD. Microbiology 8th Edition. Beijing: Higher Education Press, 2016, 176. |
沈萍陈向东. 微生物学第8版. 北京: 高等教育出版社. 2016, 176. | |
[4] | Fernández L , Rodríguez A , García P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J , 2018,12(5):1171- 1179. |
[5] | Wang XX , Kim Y , Ma Q , Hong SH , Pokusaeva K , Sturino JM , Wood TK. Cryptic prophages help bacteria cope with adverse environments. Nat Commun , 2010,1: 147. |
[6] | Akhter S , Aziz RK , Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res , 2012,40( 16): e126. |
[7] | Roux S , Enault F , Hurwitz BL , Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ , 2015,3: e985. |
[8] | Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun FZ. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome . 2017, 65( 1): 69. |
[9] | Jurtz VI , Villarroel J , Lund O , Voldby Larsen M , Nielsen M. MetaPhinder-Identifying bacteriophage sequences in metagenomic data sets. PLoS One , 2016,11( 9): e0163111. |
[10] | Arndt D , Marcu A , Liang YJ , Wishart DS. Phast , Phaster and Phastest: Tools for finding prophage in bacterial genomes. Brief Bioinform , 2019,20(4):1560- 1567. |
[11] | Amgarten D , Braga LPP , da Silva AM , Setubal JC. Marvel , a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet , 2018,9: 304. |
[12] | Song WC, Sun HX, Zhang C, Cheng L, Peng Y, Deng ZQ, Wang D, Wang Y, Hu M, Liu W, Yang HM, Shen Y, Li JH, You LC, Xiao MF. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res , 2019; 47( W1): W74-W80. |
[13] | Stevens RH, Zhang HM, Sedgley C, Bergman A, Manda AR. The prevalence and impact of lysogeny among oral isolates of Enterococcus faecalis. J Oral Microbiol , 2019, 11( 1): 1643207. |
[14] | Ma RJ. Citromicrobium bathyomarinum: diversity, activity and interaction with hosts. Xiamen Univ , 2018. |
马瑞洁. 海洋Citromicrobium bathyomarinum前噬菌体的多样性、生理生态特性及其与宿主的相互作用. 厦门大学, 2018. | |
[15] | Schmieger H, Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett , 1999, 170(1): 251- 256. |
[16] | Schicklmaier P, Moser E, Wieland T, Rabsch W, Schmieger H. A comparative study on the frequency of prophages among natural isolates of Salmonella and Escherichia coli with emphasis on generalized transducers. Antonie Van Leeuwenhoek , 1998, 73(1): 49- 54. |
[17] | Osawa RO , Iyoda S , Nakayama SI , Wada A , Yamai S , Watanabe H. Genotypic variations of Shiga toxin-converting phages from enterohaemorrhagic Escherichia coli O157: H7 isolates . J Med Microbiol , 2000, 49(6): 565- 574. |
[18] | Yamamoto N. Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2. Proc Natl Acad Sci USA , 1969, 62(1): 63- 69. |
[19] | McClelland M , Florea L , Sanderson K , Clifton SW , Parkhill J , Churcher C , Dougan G , Wilson RK , Miller W. Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi . Nucleic Acids Res , 2000, 28(24): 4974- 4986. |
[20] | Figueroa-Bossi N, Bossi L. Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol , 1999, 33(1): 167- 176. |
[21] | Popp A , Hertwig S , Lurz R , Appel B. Comparative study of temperate bacteriophages isolated from Yersinia. Syst Appl Microbiol , 2000,23(4):469- 478. |
[22] | Huggins AR, Sandine WE. Incidence and properties of temperate bacteriophages induced from lactic streptococci. Appl Environ Microbiol , 1977, 33(1): 184- 191. |
[23] | Dominguez-Mirazo M , Jin R. Weitz JS. Functional and Comparative Genomic Analysis of Integrated Prophage-Like Sequences in “ Candidatus Liberibacter asiaticus” . mSphere , 2019,4(6): e00409-e00419. |
[24] | Castillo D , Middelboe M. Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol Lett , 2016,363(24): fnw272. |
[25] | Petrov VM , Ratnayaka S , Nolan JM , Miller ES , Karam JD. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J , 2010,7: 292. |
[26] | Blaisdell BE, Campbell AM, Karlin S. Similarities and dissimilarities of phage genomes. Proc Natl Acad Sci USA , 1996, 93(12): 5854- 5859. |
[27] | Agron PG, Walker RL, Kinde H, Sawyer SJ, Hayes DC, Wollard J, Andersen GL. Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar enteritidis . Appl Environ Microbiol , 2001, 67(11): 4984- 4991. |
[28] | Chang CC , Gilsdorf JR , DiRita VJ , Marrs CF. Identification and genetic characterization of Haemophilus influenzae genetic island 1 . Infect Immun , 2000,68(5):2630- 2637. |
[29] | Dep MS , Mendz GL , Trend MA , Coloe PJ , Fry BN , Korolik V. Differentiation between Campylobacter hyoilei and Campylobater coli using genotypic and phenotypic analyses . Int J Syst Evol Microbiol , 2001,51(Pt 3):819- 826. |
[30] | Klee SR , Nassif X , Kusecek B , Merker P , Beretti JL , Achtman M , Tinsley CR. Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae . Infect Immun , 2000,68(4):2082- 2095. |
[31] | Brandt K, Tilsala-Timisjärvi A, Alatossava T. Phage-related DNA polymorphism in dairy and probiotic Lactobacillus. Micron , 2001, 32(1): 59- 65. |
[32] | Hu FQ, Li S. Prophage. Microbiology , 2009, 36(3): 432- 438. |
胡福泉, 黎庶. 前噬菌体. 微生物学通报, 2009, 36(3): 432- 438. | |
[33] | Krishnamurthi R , Ghosh S , Khedkar S , Seshasayee ASN. Repression of YdaS toxin is mediated by transcriptional repressor RacR in the cryptic rac prophage of Escherichia coli K-12 . mSphere , 2017,2(6):e00392- 17. |
[34] | Mehta P , Casjens S , Krishnaswamy S. Analysis of the lambdoid prophage element e14 in the E.coli K-12 genome . BMC Microbiol , 2004,4: 4. |
[35] | Jing TT, Fu ZW, Shen P, Chen XD. General investigation of PBSX-like defective prophages resident in Bacillus subtilis strains . Microbiology , 2016, 43(6): 1244- 1252. |
晋婷婷, 付正伟, 沈萍, 陈向东. 枯草芽孢杆菌携带PBSX类缺陷性原噬菌体的普遍性调查. 微生物学通报, 2016, 43(6): 1244- 1252. | |
[36] | Ruzin A, Lindsay J, Novick RP. Molecular genetics of SaPI1--a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol, 2001, 41(2): 365- 377. |
[37] | Rezaie N , Bakhshi B , Najar-Peerayeh S. The role of CTX and RS1 satellite phages genomic arrangement in Vibrio cholera toxin production in two recent cholera outbreaks (2012 and 2013) in IR Iran. Microb Pathog , 2017,112: 89- 94. |
[38] | Dziewit L, Radlinska M. Two inducible prophages of an antarctic Pseudomonas sp . ANT_H14 use the same capsid for packaging their genomes - characterization of a novel phage helper-satellite system . PLoS One , 2016, 11(7): e0158889. |
[39] | Dieterle ME, Fina Martin J, Durán R, Nemirovsky SI, Rivas CS, Bowman C, Russell D, Hatfull GF, Cambillau C, Piuri M. Characterization of prophages containing “evolved” Dit/Tal modules in the genome of Lactobacillus casei BL23 . Appl Microbiol Biotechnol , 2016, 100(21): 9201- 9215. |
[40] | Crestani C , Forde TL , Zadoks RN. Development and application of a prophage integrase typing scheme for group B Streptococcus. Front Microbiol , 2020,11: 1993. |
[41] | Chen J, Zhu Y, Yin M, Xu Y, Liang X, Huang YP. Characterization of maltocin S16, a phage tail-like bacteriocin with antibacterial activity against Stenotrophomonas maltophilia and Escherichia coli. J Appl Microbiol , 2019, 127(1): 78- 87. |
[42] | Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage . Mol Microbiol , 2000, 38( 2): 213- 231. |
[43] | Lotz W, Mayer F. Isolation and characterization of a bacteriophage tail-like bacteriocin from a strain of Rhizobium. J Virol , 1972, 9(1): 160- 173. |
[44] | Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol , 2012, 10(7): 472- 482. |
[45] | Marrs B. Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA , 1974,71(3):971- 973. |
[46] | Wahl LM. Pattenden T. Prophage provide a safe haven for adaptive exploration in temperate viruses. Genetics , 2017, 206(1): 407- 416. |
[47] | Gentile GM, Wetzel KS, Dedrick RM, Montgomery MT, Garlena RA, Jacobs-Sera D, Hatfull GF. More evidence of collusion: a new prophage-mediated viral defense system encoded by mycobacteriophage Sbash. mBio , 2019, 10(2): e00196- 19. |
[48] | Chen YF, Liu SY, Liang ZB, Lu MF, Zhou JL, Zhang LH. Quorum sensing and microbial drug resistance. Hereditas (Beijing) , 201638 (10): 881- 893. |
陈昱帆, 刘诗胤, 梁志彬, 吕明发, 周佳暖, 张炼辉. 群体感应与微生物耐药性. 遗传, 2016, 38(10): 881- 893. | |
[49] | Yu MK , Kim MA , Rosa V , Hwang YC , Del Fabbro M , Sohn WJ , Min KS. Role of extracellular DNA in Enterococcus faecalis biofilm formation and its susceptibility to sodium hypochlorite . J Appl Oral Sci , 2019,27: e20180699. |
[50] | Shen MY, Yang YH, Shen W, Cen LJ, McLean JS, Shi WY, Le S, He XS. A linear plasmid-like prophage of actinomyces odontolyticus promotes biofilm assembly. Appl Environ Microbiol , 2018, 84(17): e01263- 18. |
[51] | Rice SA , Tan CH , Mikkelsen PJ , Kung V , Woo J , Tay M , Hauser A , McDougald D , Webb JS , Kjelleberg S. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage . ISME J , 2009,3(3):271- 282. |
[52] | Silpe JE, Bassler BL. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell , 2019, 176( 1- 2): 268- 280. |
[53] | Loś JM , Loś M , Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol , 2011,6(8):909- 924. |
[54] | Rossmann FS, Racek T, Wobser D, Puchalka J, Rabener EM, Reiger M, Hendrickx AA, Diederich AK, Jung K, Klein C, Huebner J. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog , 2015, 11( 2): e1004653. |
[55] | Liu Y , Gong QW , Qian XJ , Li DZ , Zeng H , Li YH , Xue F , Ren JL , Zhu Ge XK , Tang F , Dai JJ. Prophage phiv205-1 facilitates biofilm formation and pathogenicity of avian pathogenic Escherichia coli strain DE205B . Vet Microbiol , 2020,247: 108752. |
[56] | Cui P, Xu T, Zhang WH, Zhang Y. Molecular mechanisms of bacterial persistence and phenotypic antibiotic resistance. Hereditas (Beijing) , 2016, 38(10): 859- 871. |
崔鹏, 许涛, 张文宏, 张颖. 细菌持留与抗生素表型耐药机制. 遗传, 2016, 38(10): 859- 871. | |
[57] | Unterholzner SJ , Poppenberger B , Rozhon W. Toxin- antitoxin systems: biology, identification, and application. Mob Genet Elements , 2013,3(5): e26219. |
[58] | Zander I, Shmidov E, Roth S, Ben-David Y, Shoval I, Shoshani S, Danielli A, Banin E. Characterization of PfiT/PfiA toxin-antitoxin system of Pseudomonas aeruginosa that affects cell elongation and prophage induction . Environ Microbiol , 2020, 22(12): 5048- 5057. |
[59] | Li YM , Liu XX , Tang KH , Wang WQ , Wang YX , Wang XX. Prophage encoding toxin/antitoxin system PfiT/PfiA inhibits Pf4 production in Pseudomonas aeruginosa. Microb Biotechnol , 2020. 13(4): 1132- 1144. |
[60] | Guo YX, Quiroga C, Chen Q, McAnulty MJ, Benedik MJ, Wood TK, Wang XX. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res , 2014, 42(10): 6448- 6462. |
[61] | Chen YY , Wang JT , Lin TL Gong YN , Li TH , Huang YY , Hsieh YC. Prophage excision in Streptococcus pneumoniae serotype 19A ST320 promote colonization: insight into its evolution from the ancestral clone taiwan 19F-14 (ST236). Front Microbiol , 2019,10: 205. |
[62] | Ghosh D, Roy K, Williamson KE, Srinivasiah S, Wommack KE, Radosevich M. Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction. Appl Environ Microbiol , 2009, 75(22): 7142- 7152. |
[63] | Erez Z , Steinberger-Levy I , Shamir M , Doron S , Stokar-Avihail A , Peleg Y , Melamed S , Leavitt A , Savidor A , Albeck S , Amitai G , Sorek R. Communication between viruses guides lysis-lysogeny decisions. Nature , 2017,541(7638):488- 493. |
[64] | Pawluk A , Staals RHJ , Taylor C , Watson BNJ , Saha S , Fineran PC , Maxwell KL , Davidson AR. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol , 2016,1(8): 16085. |
[65] | Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature , 2013, 493(7432): 429- 432. |
[66] | Landsberger M , Gandon S , Meaden S , Rollie C , Chevallereau A , Chabas H , Buckling A , Westra ER , Houte S. Anti- CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell , 2018,174(4):908- 916. |
[1] | 郑宏源, 闫琳, 杨超, 武雅蓉, 秦婧靓, 郝彤宇, 杨大进, 郭云昌, 裴晓燕, 赵彤言, 崔玉军. 溶藻弧菌群体基因组学研究[J]. 遗传, 2021, 43(4): 350-361. |
[2] | 曹俊霞, 王友亮, 王征旭. 精准调控CRISPR/Cas9基因编辑技术研究进展[J]. 遗传, 2020, 42(12): 1168-1177. |
[3] | 邓雯文, 李才武, 赵思越, 李仁贵, 何永果, 吴代福, 杨盛智, 黄炎, 张和民, 邹立扣. 大熊猫源致病大肠杆菌CCHTP全基因组测序及耐药和毒力基因分析[J]. 遗传, 2019, 41(12): 1138-1147. |
[4] | 梁志彬, 陈豫梅, 陈昱帆, 程莹莹, 张炼辉. RND家族外排泵及其与微生物群体感应系统的相互关系[J]. 遗传, 2016, 38(10): 894-901. |
[5] | 陈昱帆, 刘诗胤, 梁志彬, 吕明发, 周佳暖, 张炼辉. 群体感应与微生物耐药性[J]. 遗传, 2016, 38(10): 881-893. |
[6] | 王琳淇. 适应性策略:人类致病真菌新生隐球菌的“杀手锏”[J]. 遗传, 2015, 37(5): 436-441. |
[7] | 陈林,杨亮,段康民. 从进化谈细菌细胞间的群体感应信号传递[J]. 遗传, 2012, 34(1): 33-40. |
[8] | 陆勇军,李向辉,曾咏伦. 一个细菌的致命之旅——嗜肺军团菌分泌系统及效应蛋白的研究进展[J]. 遗传, 2011, 33(10): 1093-1101. |
[9] | 陈师勇,莫照兰,张振冬,邹玉霞,徐永立,张培军. 细菌毒力基因体内表达检测技术研究进展[J]. 遗传, 2005, 27(3): 505-511. |
[10] | 姚潇,黄留玉,杨伯伦,苏国富,. 一种体内研究病原体致病机理的新方法——信号标签诱变技术 [J]. 遗传, 2002, 24(6): 721-726. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: