遗传 ›› 2020, Vol. 42 ›› Issue (12): 1168-1177.doi: 10.16288/j.yczz.20-069
收稿日期:
2020-03-13
修回日期:
2020-11-02
出版日期:
2020-12-17
发布日期:
2020-11-25
通讯作者:
王征旭
E-mail:zhxuwang@qq.com
作者简介:
曹俊霞,博士,助理研究员,研究方向:生物治疗。E-mail: 基金资助:
Junxia Cao1, Youliang Wang2, Zhengxu Wang1,3()
Received:
2020-03-13
Revised:
2020-11-02
Online:
2020-12-17
Published:
2020-11-25
Contact:
Wang Zhengxu
E-mail:zhxuwang@qq.com
Supported by:
摘要:
基因编辑(gene editing)是一种能对细胞和生物体基因组一小段DNA进行定点修饰或者删除、插入的基因工程技术。基因编辑技术在疾病治疗、基因功能调控、基因检测、药物研发和作物育种等方面具有广阔的应用前景,但在应用中也逐渐显现出脱靶、基因毒性等副作用问题。CRISPR (clustered regularly interspaced short palindromic repeats)系统中核酸酶Cas9蛋白能通过与gRNA (guide RNA)结合特异性识别靶DNA并进行酶切反应,由于Cas9蛋白和gRNA在其自身活性、识别位点及结合能力等方面具有不同的特性,因此在应用中可以通过对Cas9蛋白酶的活性以及与靶DNA在时间和空间上的结合进行精准调控,主要调控方法包括使用光、温度和药物等调节Cas9融合蛋白、抗CRISPR蛋白、核酸类和小分子类化合物抑制剂的使用等,从而能有效地防范基因编辑技术的风险和增强精准调控基因编辑技术的实际应用性。本文就目前如何精准调控基因编辑技术,尤其是精准调控CRISPR/Cas9基因编辑技术的方法进行了综述,以期为人类疾病治疗、作物育种、家畜遗传改良和防范生物技术缪用等提供借鉴和研究思路。
曹俊霞, 王友亮, 王征旭. 精准调控CRISPR/Cas9基因编辑技术研究进展[J]. 遗传, 2020, 42(12): 1168-1177.
Junxia Cao, Youliang Wang, Zhengxu Wang. Advances in precise regulation of CRISPR/Cas9 gene editing technology[J]. Hereditas(Beijing), 2020, 42(12): 1168-1177.
[1] | 2013 Runners-Up . Genetic microsurgery for the masses. Science, 2013,342(6165):1434-1435. |
[2] | Travis J . Breakthrough of the year: CRISPR makes the cut. Science, 2015,350(6267):1456-1457. |
[3] | Nature Editor . The scientific events that shaped the decade. Nature, 2019,576(7787):337-338. |
[4] | Enache OM, Rendo V, Abdusamad M, Lam D, Davison D, Pal S, Currimjee N, Hess J, Pantel S, Nag A, Thorner AR, Doench JG, Vazquez F, Beroukhim R, Golub TR, Ben-David U . Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet, 2020,52(7):662-668. |
[5] | Ledford H . Quest to use CRISPR against disease gains ground. Nature, 2020,577(7789):156. |
[6] | Cyranoski D . What CRISPR-baby prison sentences mean for research. Nature, 2020,577(7789):154-155. |
[7] | Hwang S, Maxwell KL . Meet the anti-CRISPRs: widespread protein inhibitors of CRISPR-Cas systems. CRISPR J, 2019,2(1):23-30. |
[8] | Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA, La Russa M, Lau MB, Abbott TR, Xu XS, Zhao DH, Gao YC, Kipniss NH, Smolke CD, Bondy- Denomy J, Qi LS . Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun, 2019,10(1):194. |
[9] | Adli M . The CRISPR tool kit for genome editing and beyond. Nat Commun, 2018,9(1):1911. |
[10] | Tang LC, Gu F . Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM. Hereditas (Beijing), 2020, 42(3):236-249. |
唐连超, 谷峰 . CRISPR-Cas基因编辑系统升级: 聚焦Cas蛋白和PAM. 遗传, 2020,42(3):236-249. | |
[11] | Rees HA, Liu DR . Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet, 2018,19(12):770-788. |
[12] | Cyranoski D . CRISPR gene-editing tested in a person for the first time. Nature, 2016,539(7630):479. |
[13] | Chen YO, Bao Y, Ma HZ, Yi ZY, Zhou Z, Wei WS . Gene editing technology and its research progress in China. Hereditas (Beijing), 2018,40(10):900-915. |
陈一欧, 宝颖, 马华峥, 伊宗裔, 周卓, 魏文胜 . 基因编辑技术及其在中国的研究发展. 遗传, 2018,40(10):900-915. | |
[14] | Xu L, Wang J, Liu YL, Xie LF, Su B, Mou DL, Wang LT, Liu TT, Wang XB, Zhang B, Zhao L, Hu LD, Ning HM, Zhang YF, Deng K, Liu LF, Lu XF, Zhang T, Xu J, Li C, Wu H, Deng HK, Chen H . CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med, 2019,381(13):1240-1247. |
[15] | Wu YX, Zeng J, Roscoe BP, Liu PP, Yao QM, Lazzarotto CR, Clement K, Cole MA, Luk K, Baricordi C, Shen AH, Ren C, Esrick EB, Manis JP, Dorfman DM, Williams DA, Biffi A, Brugnara C, Biasco L, Brendel C, Pinello L, Tsai SQ, Wolfe SA, Bauer DE . Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med, 2019,25(5):776-783. |
[16] | Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, Ghorashian S, Pinner D, Ahsan G, Gilmour K, Lucchini G, Inglott S, Mifsud W, Chiesa R, Peggs KS, Chan L, Farzeneh F, Thrasher AJ, Vora A, Pule M, Veys P. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med, 2017, 9(374): eaaj2013. |
[17] | Cornu TI, Mussolino C, Cathomen T . Refining strategies to translate genome editing to the clinic. Nat Med, 2017,23(4):415-423. |
[18] | Howard HC, van E CG, Forzano F, Radojkovic D, Rial-Sebbag E, de Wert G, Borry P, Cornel MC; Public,and Professional Policy Committee of the European Society of Human Genetics. One small edit for humans, one giant edit for humankind? Points and questions to consider for a responsible way forward for gene editing in humans. Eur J Hum Genet, 2018,26(1):1-11. |
[19] | Reeves RG, Voeneky S, Caetano-Anollés D, Beck F, Boëte C . Agricultural research, or a new bioweapon system? Science, 2018,362(6410):35-37. |
[20] | Grunwald HA, Gantz VM, Poplawski G, Xu XS, Bier E, Cooper KL . Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline. Nature, 2019,566(7742):105-109. |
[21] | Gangopadhyay SA, Cox KJ, Manna D, Lim D, Maji B, Zhou QX, Choudhary A . Precision control of CRISPR- Cas9 using small molecules and light. Biochemistry, 2019,58(4):234-244. |
[22] | Maji B, Gangopadhyay SA, Lee M, Shi MC, Wu P, Heler R, Mok B, Lim D, Siriwardena SU, Paul B, Dančík V, Vetere A, Mesleh MF, Marraffini LA, Liu DR, Clemons PA, Wagner BK, Choudhary A . A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9. Cell, 2019,177(4):1067-1079. |
[23] | Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E . The biology of CRISPR-Cas: backward and forward. Cell, 2018,172(6):1239-1259. |
[24] | Stanley SY, Maxwell KL . Phage-encoded anti-CRISPR defenses. Annu Rev Genet, 2018,52:445-464. |
[25] | Zhang F, Song GX, Tian Y . Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Animal Model Exp Med, 2019,2(2):69-75. |
[26] | Borges AL, Davidson AR, Bondy-Denomy J . The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu Rev Virol, 2017,4(1):37-59. |
[27] | Pawluk A, Davidson AR, Maxwell KL . Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol, 2018,16(1):12-17. |
[28] | Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR . Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol, 2015,11(5):316-318. |
[29] | Maji B, Moore CL, Zetsche B, Volz SE, Zhang F, Shoulders MD, Choudhary A . Multidimensional chemical control of CRISPR-Cas9. Nat Chem Biol, 2017,13(1):9-11. |
[30] | Gao YC, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS . Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods, 2016,13(12):1043-1049. |
[31] | Fegan A, White B, Carlson JC, Wagner CR . Chemically controlled protein assembly: techniques and applications. Chem Rev, 2010,110(6):3315-3336. |
[32] | Chiarella AM, Butler KV, Gryder BE, Lu DB, Wang TA, Yu XF, Pomella S, Khan J, Jin J, Hathaway NA . Dose- dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nat Biotechnol, 2020,38(1):50-55. |
[33] | Shrimp JH, Grose C, Widmeyer SRT, Thorpe AL, Jadhav A, Meier JL . Chemical control of a CRISPR-Cas9 acetyltransferase. ACS Chem Biol, 2018,13(2):455-460. |
[34] | Rose JC, Stephany JJ, Valente WJ, Trevillian BM, Dang HV, Bielas JH, Maly DJ, Fowler DM . Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics. Nat Methods, 2017,14(9):891-896. |
[35] | Kang K, Huang L, Li Q, Liao XY, Dang QJ, Yang Y, Luo J, Zeng Y, Li L, Gou DM . An improved Tet-on system in microRNA overexpression and CRISPR/Cas9-mediated gene editing. J Anim Sci Biotechnol, 2019,10:43. |
[36] | Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M . CRISPR-Cas9-based photoactivatable transcription system. Chem Biol, 2015,22(2):169-174. |
[37] | Nihongaki Y, Kawano F, Nakajima T, Sato M . Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol, 2015,33(7):755-760. |
[38] | Jain PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, Bhatia SN . Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angew Chem Int Ed Engl, 2016,55(40):12440-12444. |
[39] | Tang WX, Hu JH, Liu DR . Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun, 2017,8:15939. |
[40] | Pu JY, Kentala K, Dickinson BC . Multidimensional control of Cas9 by evolved RNA Polymerase-Based biosensors. ACS Chem Biol, 2018,13(2):431-437. |
[41] | Lai AC, Crews CM . Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov, 2017,16(2):101-114. |
[42] | Natsume T, Kanemaki MT . Conditional degrons for controlling protein expression at the protein level. Annu Rev Genet, 2017,51:83-102. |
[43] | Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, Yang A, Leggett AL, Erb MA, Lawlor MA, Souza A, Scott TG, Vittori S, Perry JA, Qi J, Winter GE, Wong KK, Gray NS, Bradner JE . The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol, 2018,14(5):431-441. |
[44] | Bonger KM, Chen LC, Liu CW, Wandless TJ . Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat Chem Biol, 2011,7(8):531-537. |
[45] | Chung HK, Jacobs CL, Huo Y, Yang J, Krumm SA, Plemper RK, Tsien RY, Lin MZ . Tunable and reversible drug control of protein production via a self-excising degron. Nat Chem Biol, 2015,11(9):713-720. |
[46] | Matsuzawa S, Cuddy M, Fukushima T, Reed JC . Method for targeting protein destruction by using a ubiquitin- independent, proteasome-mediated degradation pathway. Proc Natl Acad Sci USA, 2005,102(42):14982-14987. |
[47] | Tu ZC, Yang WL, Yan S, Yin A, Gao JQ, Liu XD, Zheng YH, Zheng JZ, Li ZJ, Yang S, Li SH, Guo XY, Li XJ . Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep, 2017,7:42081. |
[48] | Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang LY, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH . Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med, 2019,25(2):249-254. |
[49] | Liu Q, Zhang HX, Huang XT . Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering. FEBS J, 2020,287(4):626-644. |
[50] | Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B . A unified resource for tracking anti-CRISPR names. CRISPR J, 2018,1:304-305. |
[51] | Zhu YL, Gao A, Zhan Q, Wang Y, Feng H, Liu SQ, Gao GX, Serganov A, Gao P . Diverse mechanisms of CRISPR- Cas9 inhibition by type IIC anti-CRISPR proteins. Mol Cell, 2019,74(2):296-309. |
[52] | Jiang FG, Liu JJ, Osuna BA, Xu M, Berry JD, Rauch BJ, Nogales E, Bondy-Denomy J, Doudna JA . Temperature- responsive competitive inhibition of CRISPR-Cas9. Mol Cell, 2019,73(3):601-610. |
[53] | Barkau CL, O'Reilly D, Rohilla KJ, Damha MJ, Gagnon KT,. Rationally designed anti-CRISPR nucleic acid inhibitors of CRISPR-Cas9. Nucleic Acid Ther, 2019,29(3):136-147. |
[54] | Dowdy SF . Controlling CRISPR-Cas9 gene editing. N Engl J Med, 2019,381(3):289-290. |
[55] | Lee J, Mou HW, Ibraheim R, Liang SQ, Liu PP, Xue W, Sontheimer EJ . Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA, 2019,25(11):1421-1431. |
[56] | Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C, Fakhiri J, Mastel M, Börner K, Eils R, Grimm D, Niopek D . Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res, 2019,47(13):e75. |
[57] | Wang SR, Wu LY, Huang HY, Xiong W, Liu J, Wei L, Yin P, Tian T, Zhou X . Conditional control of RNA-guided nucleic acid cleavage and gene editing. Nat Commun, 2020,11(1):91. |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[3] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[4] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[5] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[6] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[7] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[8] | 陈学梅, 魏云林, 季秀玲. 前噬菌体研究进展[J]. 遗传, 2021, 43(3): 240-248. |
[9] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[10] | 李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[11] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[12] | 李霞, 施皖, 耿立召, 许建平. CRISPR/Cas核糖核蛋白介导的植物基因组编辑[J]. 遗传, 2020, 42(6): 556-564. |
[13] | 秦瑞英, 魏鹏程. Prime editing引导植物基因组精确编辑新局面[J]. 遗传, 2020, 42(6): 519-523. |
[14] | 唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249. |
[15] | 杨新萍,于媛,许操. 重新设计与快速驯化创造新型作物[J]. 遗传, 2019, 41(9): 827-835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: