[1] |
Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda- Angulo A, Takiar V, Charubhumi V, Balord F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 2012, 15(5): 700-702.
doi: 10.1038/nn.3079
pmid: 22446882
|
[2] |
Ghosh HS. Adult neurogenesis and the promise of adult neural stem cells. J Exp Neurosci, 2019, 13: 1179069519856876.
|
[3] |
Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, Agha EE, Bellusci S, Hajihosseini MK. Fgf10- expressing tanycytes add new neurons to the appetite/ energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci, 2013, 33(14): 6170-6180.
doi: 10.1523/JNEUROSCI.2437-12.2013
|
[4] |
Mu WH, Li S, Xu JK, Guo XZ, Wu HD, Chen ZH, Qiao LY, Helfer G, Lu FL, Liu C, Wu QF. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun, 2021, 12(1): 2288.
doi: 10.1038/s41467-021-22640-z
|
[5] |
Zilkha-Falb R, Kaushansky N, Ben-Nun A. The median eminence, a new oligodendrogenic niche in the adult mouse brain. Stem Cell Reports, 2020, 14(6): 1076-1092.
doi: S2213-6711(20)30145-4
pmid: 32413277
|
[6] |
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab, 2022, 4(7): 813-825.
doi: 10.1038/s42255-022-00610-z
pmid: 35879459
|
[7] |
Dietrich MO, Horvath TL. Fat incites tanycytes to neurogenesis. Nat Neurosci, 2012, 15(5): 651-653.
doi: 10.1038/nn.3091
pmid: 22534576
|
[8] |
Duquenne M, Folgueira C, Bourouh C, Millet M, Silva A, Clasadonte J, Imbernon M, Fernandois D, Martinez-Corral I, Kusumakshi S, Caron E, Rasika S, Deliglia E, Jouy N, Oishi A, Mazzon M, Trinquet E, Tavernier J, Kim YB, Ory S, Jockers R, Schwaninger M, Boehm U, Nogueiras R, Annicotte JS, Gasman S, Dam J, Prévot V. Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab, 2021, 3(8): 1071-1090.
doi: 10.1038/s42255-021-00432-5
pmid: 34341568
|
[9] |
Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, Bentsen MA, Alonge KM, Zhao C, Tadross J, Holmqvist S, Shimizu T, Hathaway H, Li HL, Macklin W, Schwartz MW, Richardson WD, Yeo GSH, Franklin RJM, Karadottir RT, Rowitch DH, Blouet C. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep, 2021, 36(2): 109362.
doi: 10.1016/j.celrep.2021.109362
|
[10] |
Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu XH, Mingay A, Gillon CJ, Kim JH, Storch KF, Boehm U, Bourque CW, Stroh T, Dimou L, Kokoeva MV. Adult NG2-Glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab, 2016, 23(5): 797-810.
doi: 10.1016/j.cmet.2016.04.013
pmid: 27166944
|
[11] |
Chen ZH, Li S, Xu MR, Liu CC, Ye HY, Wang B, Wu QF. Single-cell transcriptomic profiling of the hypothalamic median eminence during aging. J Genet Genomics, 2022, 49(6): 523-536.
doi: 10.1016/j.jgg.2022.01.001
|
[12] |
Cavallucci V, Fidaleo M, Pani G. Neural stem cells and nutrients: poised between quiescence and exhaustion. Trends Endocrinol Metab, 2016, 27(11): 756-769.
doi: 10.1016/j.tem.2016.06.007
|
[13] |
Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su XY, Verzi MP. HNF 4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology, 2020, 158(4): 985-999.
doi: S0016-5085(19)41587-4
pmid: 31759926
|
[14] |
Mihaylova MM, Cheng CW, Cao AQ, Triathi S, Mana MD, Bauer-Rowe KE, Abu-Remaileh M, Clavain L, Erdemir A, Lewis CA, Freinkman E, Dickey AS, La Sada AR, Huang YM, Bell GW, Deshande V, Carmeliet P, Katajisto P, Sabatini DM, Yilmaz ÖH. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell, 2018, 22(5): 769-778.
doi: S1934-5909(18)30163-2
pmid: 29727683
|
[15] |
Maggi R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front Cell Neurosci, 2014, 8: 440.
doi: 10.3389/fncel.2014.00440
pmid: 25610370
|
[16] |
Chamling X, Kallman A, Fang WX, Berlinicke CA, Mertz JL, Devkota, Pantoja IEM, Smith MD, Ji ZC, Chang C, Kaushik A, Chen L, Whartenby KA, Calabresi PA, Mao HQ, Ji HK, Wang TH, Zack DJ. Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells. Nat Commun, 2021, 12(1): 652.
doi: 10.1038/s41467-021-20892-3
pmid: 33510160
|
[17] |
Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science, 2018, 362(6411): 181-185.
doi: 10.1126/science.aat0473
pmid: 30309945
|
[18] |
White CW 3rd, Pratt K,Villeda SA. OPCs on a diet: a youthful serving of remyelination. Cell Metab, 2019, 30(6): 1004-1006.
doi: S1550-4131(19)30616-3
pmid: 31801054
|
[19] |
Sherafat A, Pfeiffer F, Nishiyama A. Shaping of regional differences in oligodendrocyte dynamics by regional heterogeneity of the pericellular microenvironment. Front Cell Neurosci, 2021, 15: 721376.
doi: 10.3389/fncel.2021.721376
|
[20] |
Romanov RA, Tretiakov EO, Kastriti ME, Zuancic M, Häring M, Korchynska S, Poadin K, Benevento M, Rebernik P, Lallemend F, Nishimori K, Clotman F, Andrews WD, Parnavelas JG, Farlik M, Bock C, Adameyko I, Hökfelt T, Keimema E, Harkany T. Molecular design of hypothalamus development. Nature, 2020, 582(7811): 246-252.
doi: 10.1038/s41586-020-2266-0
|
[21] |
Zhou X, Lu YF, Zhao FQ, Dong J, Ma WJ, Zhong SJ, Wang MD, Wang BS, Zhao YQ, Shi YC, Ma Q, Lu T, Zhang J, Wang XQ, Wu Q. Deciphering the spatial- temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell, 2022, 29(2): 328-343.
doi: 10.1016/j.stem.2021.11.009
|
[22] |
Beyer BA, Fang ML, Sadrian B, Montenegro-Burke JR, laisted WC, Kok BPC, Saez E, Kondo T, Siuzdak G, Lairson LL. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol, 2018, 14(1): 22-28.
doi: 10.1038/nchembio.2517
pmid: 29131145
|
[23] |
Iram T, Kern F, Kaur A, Myneni S, Morningstar AR, Shin H, Garcia MA, Yerra L, Palovics R, Yang AC, Hahn O, Lu NN, Shuken SR, Haney MS, Lehallier B, Iyer M, Luo J, Zetterberg H, Keller A, Zuchero JB, Wyss-Coray T.Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature, 2022, 605(7910): 509-515.
doi: 10.1038/s41586-022-04722-0
|