遗传 ›› 2022, Vol. 44 ›› Issue (10): 899-912.doi: 10.16288/j.yczz.22-188
收稿日期:
2022-06-30
修回日期:
2022-07-28
出版日期:
2022-10-20
发布日期:
2022-08-11
通讯作者:
高原青
E-mail:darlingxyxy@163.com;yuanqinggao@njmu.edu.cn
作者简介:
王心缘,在读硕士研究生,专业方向:药理学。E-mail: 基金资助:
Xinyuan Wang(), Rui Sun, Yuanqing Gao()
Received:
2022-06-30
Revised:
2022-07-28
Online:
2022-10-20
Published:
2022-08-11
Contact:
Gao Yuanqing
E-mail:darlingxyxy@163.com;yuanqinggao@njmu.edu.cn
Supported by:
摘要:
Prader-Willi 综合征(Prader-Willi syndrome, PWS)是一种罕见的先天发育性疾病,主要由父系15号染色体长臂15q11~q13区域基因缺失或沉默引起。PWS临床表型复杂,主要包括无法满足的饥饿、病态的肥胖、智力发育迟缓、性腺发育不良等,多数症状提示与下丘脑的功能障碍相关。然而到目前为止,PWS的分子遗传机制尚不明确,尤其是基因和临床表现之间的对应关系和详细机制有待进一步研究。本文以PWS“基因型-下丘脑功能障碍表型”之间的关联为重点,综述了15q11~q13区域基因(NIPA1、NIPA2、TUBGCP5、CYFIP1、MAGEL2、NDN、MKRN3和SNORD116等)与PWS患者过度摄食和肥胖、性腺发育不良、睡眠呼吸障碍、生长发育迟缓等表型相关的研究进展,旨在加深对PWS遗传机制的理解,探讨潜在的PWS药物靶点的可能性。
王心缘, 孙睿, 高原青. Prader-Willi综合征下丘脑功能障碍的遗传机制研究进展[J]. 遗传, 2022, 44(10): 899-912.
Xinyuan Wang, Rui Sun, Yuanqing Gao. Advances in genetic mechanisms of hypothalamic dysfunction in Prader-Willi syndrome[J]. Hereditas(Beijing), 2022, 44(10): 899-912.
表1
Prader-Willi综合征中基因功能和下丘脑功能障碍表型相关研究"
基因分组 | 基因 | 下丘脑功能障碍表型 | 参与的生物过程/机制 | 参考文献 |
---|---|---|---|---|
近端非印记区 | NIPA1 | 食欲亢进、过度摄食 | 镁离子转运蛋白,调控神经元的分泌和吞噬 | [ |
NIPA2 | 生长发育迟缓、骨质疏松 | 镁离子转运蛋白,调控神经元的分泌和吞噬、影响神经元兴奋性;调节线粒体自噬 | [ | |
TUBGCP5 | 神经发育迟缓;行为问题 | 细胞分裂过程 | [ | |
CYFIP1 | 生长发育迟缓、智力障碍;强迫性摄食行为 | 调节细胞骨架动力学和蛋白质翻译,影响轴突生长和突触功能 | [ | |
PWS仅父系 表达印记区 | MKRN3 | 性腺功能减退 | 调控GnRH的分泌,影响下丘脑-垂体-性腺轴 | [ |
MAGEL2 | 新生儿喂养困难;过度摄食与肥胖;昼夜节律失调;性腺功能减退 | 影响神经肽的产生及分泌,调控轴突生长、突触功能等 | [ | |
NDN | 睡眠呼吸功能障碍;学习行为异常;生殖功能改变 | 调控轴突的生长和迁移、神经元的分化和存活;调控时钟基因的表达,影响昼夜节律 | [ | |
SNORD116 | 生长发育迟缓;过度摄食和肥胖;睡眠功能障碍 | RNA修饰和剪接,调控摄食神经环路和昼夜节律 | [ | |
远端非印记区 | HERC2 | 性腺功能减退;生长发育迟缓 | 蛋白质囊泡运输和降解途径 | [ |
GABA 受体亚基 | 过度摄食与肥胖;学习记忆障碍;强迫行为 | 调控中枢神经系统抑制性神经递质 | [ |
[1] | Prader A. Ein syndrom von adipositas, kleinwuchs, kryptorchismus und oligophrenie nach myatonieartigem zustand im neugeborenenalter. Schweiz Med Wochenschr, 1956, (86): 1260-1261. |
[2] |
Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet, 2010, 154C(3): 365-376.
doi: 10.1002/ajmg.c.30273 |
[3] |
Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics, 1993, 91(2): 398-402.
pmid: 8424017 |
[4] |
Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med, 2005, 7(14): 1-20.
doi: 10.1017/S1462399405009531 pmid: 16038620 |
[5] | Division of endocrinology, genetics and metabolism, Chinese Pediatric Society,Chinese Medical Association, Editorial board of Chinese Journal of Pediatrics. Expert consensus on the diagnosis and treatment of Prader- Willi syndrome in China(2015). Chin J Pediatr, 2015, 53(6): 419-424. |
中华医学会儿科学分会内分泌遗传代谢学组, 《中华儿科杂志》编辑委员会.中国Prader-Willi综合征诊治专家共识(2015). 中华儿科杂志, 2015, 53(6): 419-424. | |
[6] |
Aycan Z, Baş VN. Prader-Willi syndrome and growth hormone deficiency. J Clin Res Pediatr Endocrinol, 2014, 6(2): 62-67.
doi: 10.4274/Jcrpe.1228 pmid: 24932597 |
[7] |
Butler MG, Theodoro MF, Bittel DC, Donnelly JE. Energy expenditure and physical activity in Prader-Willi syndrome: comparison with obese subjects. Am J Med Genet A, 2007, 143A(5): 449-459.
pmid: 17103434 |
[8] | Eiholzer U, Schlumpf M, Nordmann Y, l'Allemand D. Early manifestations of Prader-Willi syndrome: influence of growth hormone. J Pediatr Endocrinol Metab, 2001, 14(Suppl 6): 1441-1444. |
[9] |
Eldar-Geva T, Hirsch HJ, Benarroch F, Rubinstein O, Gross-Tsur V. Hypogonadism in females with Prader- Willi syndrome from infancy to adulthood: variable combinations of a primary gonadal defect and hypothalamic dysfunction. Eur J Endocrinol, 2010, 162(2): 377-384.
doi: 10.1530/EJE-09-0901 pmid: 19946044 |
[10] | Myers SE, Carrel AL, Whitman BY, Allen DB. Sustained benefit after 2 years of growth hormone on body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome. J Pediatr, 2000, 137(1): 42-49. |
[11] |
Butler MG. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet, 1990, 35(3): 319-332.
doi: 10.1002/ajmg.1320350306 |
[12] |
Miller JL, Lynn CH, Driscoll DC, Goldstone AP, Gold JA, Kimonis V, Dykens E, Butler MG, Shuster JJ, Driscoll DJ. Nutritional phases in Prader-Willi syndrome. Am J Med Genet A, 2011, 155A(5): 1040-1049.
doi: 10.1002/ajmg.a.33951 pmid: 21465655 |
[13] |
Butler MG, Manzardo AM, Heinemann J, Loker C, Loker J. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet Med, 2017, 19(6): 635-642.
doi: 10.1038/gim.2016.178 pmid: 27854358 |
[14] | Heymsfield SB, Avena NM, Baier L, Brantley P, Bray GA, Burnett LC, Butler MG, Driscoll DJ, Egli D, Elmquist J, Forster JL, Goldstone AP, Gourash LM, Greenway FL, Han JC, Kane JG, Leibel RL, Loos RJF, Scheimann AO, Roth CL, Seeley RJ, Sheffield V, Tauber M, Vaisse C, Wang LH, Waterland RA, Wevrick R, Yanovski JA, Zinn AR. Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring), 2014, 22 (Suppl 1): S1-S17. |
[15] |
Crinò A, Fintini D, Bocchini S, Grugni G. Obesity management in Prader-Willi syndrome: current perspectives. Diabetes Metab Syndr Obes, 2018, 11: 579-593.
doi: 10.2147/DMSO.S141352 |
[16] | Tan QM, Orsso CE, Deehan EC, Triador L, Field CJ, Tun HM, Han JC, Müller TD, Haqq AM. Current and emerging therapies for managing hyperphagia and obesity in Prader-Willi syndrome: A narrative review. Obes Rev, 2020, 21(5): e12992. |
[17] |
Vogels A, Moerman P, Frijns JP, Bogaert GA. Testicular histology in boys with Prader-Willi syndrome: fertile or infertile? J Urol, 2008, 180(< W>4 Suppl): 1800-1804.
doi: 10.1016/j.juro.2008.03.113 |
[18] |
Bakker NE, Wolffenbuttel KP, Looijenga LHJ, Hokken- Koelega ACS. Testes in infants with Prader-Willi syndrome: human chorionic gonadotropin treatment, surgery and histology. J Urol, 2015, 193(1): 291-298.
doi: 10.1016/j.juro.2014.07.113 pmid: 25109686 |
[19] |
Zitzmann M, Nieschlag E. Hormone substitution in male hypogonadism. Mol Cell Endocrinol, 2000, 161(1-2): 73-88.
pmid: 10773395 |
[20] |
Beebe DW. Neurobehavioral morbidity associated with disordered breathing during sleep in children: a comprehensive review. Sleep, 2006, 29(9): 1115-1134.
pmid: 17040000 |
[21] |
Sedky K, Bennett DS, Pumariega A. Prader Willi syndrome and obstructive sleep apnea: co-occurrence in the pediatric population. J Clin Sleep Med, 2014, 10(4): 403-409.
doi: 10.5664/jcsm.3616 pmid: 24733986 |
[22] |
Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG. Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet A, 2007, 143A(5): 430-442.
pmid: 17236194 |
[23] |
Fronczek R, Lammers GJ, Balesar R, Unmehopa UA, Swaab DF. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome. J Clin Endocrinol Metab, 2005, 90(9): 5466-5470.
doi: 10.1210/jc.2005-0296 |
[24] |
Aran A, Einen M, Lin L, Plazzi G, Nishino S, Mignot E. Clinical and therapeutic aspects of childhood narcolepsy- cataplexy: a retrospective study of 51 children. Sleep, 2010, 33(11): 1457-1464.
doi: 10.1093/sleep/33.11.1457 pmid: 21102987 |
[25] |
Meyer SL, Splaingard M, Repaske DR, Zipf W, Atkins J, Jatana K. Outcomes of adenotonsillectomy in patients with Prader-Willi syndrome. Arch Otolaryngol Head Neck Surg, 2012, 138(11): 1047-1051.
doi: 10.1001/2013.jamaoto.64 |
[26] |
Whittington J, Holland A, Webb T, Butler J, Clarke D, Boer H. Academic underachievement by people with Prader-Willi syndrome. J Intellect Disabil Res, 2004, 48(Pt 2): 188-200.
doi: 10.1111/j.1365-2788.2004.00473.x |
[27] |
Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med, 2012, 14(1): 10-26.
doi: 10.1038/gim.0b013e31822bead0 pmid: 22237428 |
[28] |
Böhm B, Ritzén EM, Lindgren AC. Growth hormone treatment improves vitality and behavioural issues in children with Prader-Willi syndrome. Acta Paediatr, 2015, 104(1): 59-67.
doi: 10.1111/apa.12813 |
[29] | Deal CL, Tony M, Höybye C, Allen DB, Tauber M, Christiansen JS, 2011 Growth Hormone in Prader-Willi Syndrome Clinical Care Guidelines Workshop Participants. GrowthHormone Research Society workshop summary:consensus guidelines for recombinant human growth hormone therapy in Prader-Willi syndrome. J Clin Endocrinol Metab, 2013, 98(6): E1072-E1087. |
[30] |
Butler MG. Prader-Willi syndrome: obesity due to genomic imprinting. Curr Genomics, 2011, 12(3): 204-215.
doi: 10.2174/138920211795677877 pmid: 22043168 |
[31] |
Bittel DC, Kibiryeva N, Butler MG. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics, 2006, 118(4): e1276-e1283.
doi: 10.1542/peds.2006-0424 pmid: 16982806 |
[32] |
Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics, 2004, 113(<W>3 Pt 1):565-573.
doi: 10.1542/peds.113.3.565 pmid: 14993551 |
[33] |
Zarcone J, Napolitano D, Peterson C, Breidbord J, Ferraioli S, Caruso-Anderson M, Holsen L, Butler MG, Thompson T. The relationship between compulsive behaviour and academic achievement across the three genetic subtypes of Prader-Willi syndrome. J Intellect Disabil Res, 2007, 51(Pt.6): 478-487.
doi: 10.1111/j.1365-2788.2006.00916.x |
[34] |
Burnside RD, Pasion R, Mikhail FM, Carroll AJ, Robin NH, Youngs EL, Gadi IK, Keitges E, Jaswaney VL, Papenhausen PR, Potluri VR, Risheg H, Rush B, Smith JL, Schwartz S, Tepperberg JH, Butler MG. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. Hum Genet, 2011, 130(4): 517-528.
doi: 10.1007/s00439-011-0970-4 pmid: 21359847 |
[35] |
Butler MG. Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder. J Intellect Disabil Res, 2017, 61(6): 568-579.
doi: 10.1111/jir.12382 |
[36] |
Chang X, Qu HQ, Liu YC, Glessner J, Hou CP, Wang FX, Li J, Sleiman P, Hakonarson H. Microduplications at the 15q11.2 BP1-BP2 locus are enriched in patients with anorexia nervosa. J Psychiatr Res, 2019, 113: 34-38.
doi: S0022-3956(18)31029-X pmid: 30878790 |
[37] |
Chen H, Victor AK, Klein J, Tacer KF, Tai DJ, de Esch C, Nuttle A, Temirov J, Burnett LC, Rosenbaum M, Zhang YY, Ding L, Moresco JJ, Diedrich JK, Yates JR, Tillman HS, Leibel RL, Talkowski ME, Billadeau DD, Reiter LT, Potts PR. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight, 2020, 5(17): e138576.
doi: 10.1172/jci.insight.138576 |
[38] |
Goytain A, Hines RM, El-Husseini A, Quamme GA. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem, 2007, 282(11): 8060-8068.
doi: 10.1074/jbc.M610314200 pmid: 17166836 |
[39] |
Goytain A, Hines RM, Quamme GA. Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol, 2008, 295(4): C944-C953.
doi: 10.1152/ajpcell.00091.2008 |
[40] |
Liu NN, Xie H, Xiang-Wei WS, Gao K, Wang TS, Jiang YW. The absence of NIPA2 enhances neural excitability through BK (big potassium) channels. CNS Neurosci Ther, 2019, 25(8): 865-875.
doi: 10.1111/cns.13119 |
[41] |
Zhao W, Zhang WL, Ma HD, Yang MW. NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep, 2020, 10(1): 3078.
doi: 10.1038/s41598-020-59743-4 pmid: 32080264 |
[42] |
Karsenty G. Leptin controls bone formation through a hypothalamic relay. Recent Prog Horm Res, 2001, 56: 401-415.
pmid: 11237223 |
[43] |
Murphy SM, Preble AM, Patel UK, O'Connell KL, Dias DP, Moritz M, Agard D, Stults JT, Stearns T. GCP5 and GCP6: two new members of the human gamma-tubulin complex. Mol Biol Cell, 2001, 12(11): 3340-3352.
pmid: 11694571 |
[44] |
Maver A, Čuturilo G, Kovanda A, Miletić A, Peterlin B. Rare missense TUBGCP5 gene variant in a patient with primary microcephaly. Eur J Med Genet, 2019, 62(12): 103598.
doi: 10.1016/j.ejmg.2018.12.003 |
[45] |
De Wolf V, Brison N, Devriendt K, Peeters H. Genetic counseling for susceptibility loci and neurodevelopmental disorders: the del15q11.2 as an example. Am J Med Genet A, 2013, 161A(11): 2846-2854.
doi: 10.1002/ajmg.a.36209 pmid: 24123946 |
[46] |
Nowicki ST, Tassone F, Ono MY, Ferranti J, Croquette MF, Goodlin-Jones B, Hagerman RJ. The Prader-Willi phenotype of fragile X syndrome. J Dev Behav Pediatr, 2007, 28(2): 133-138.
pmid: 17435464 |
[47] |
Babbs RK, Beierle JA, Ruan QT, Kelliher JC, Chen MM, Feng AX, Kirkpatrick SL, Benitez FA, Rodriguez FA, Pierre JJ, Anandakumar J, Kumar V, Mulligan MK, Bryant CD.Cyfip1 haploinsufficiency increases compulsive-like behavior and modulates palatable food intake in mice: dependence on cyfip2 genetic background, parent-of origin, and sex. G3 (Bethesda), 2019, 9(9): 3009-3022.
doi: 10.1534/g3.119.400470 |
[48] |
Chen ZC, Borek D, Padrick SB, Gomez TS, Metlagel Z, Ismail AM, Umetani J, Billadeau DD, Otwinowski Z, Rosen MK. Structure and control of the actin regulatory WAVE complex. Nature, 2010, 468(7323): 533-538.
doi: 10.1038/nature09623 |
[49] |
Hsiao K, Harony-Nicolas H, Buxbaum JD, Bozdagi- Gunal O, Benson DL. Cyfip1 regulates presynaptic activity during development. J Neurosci, 2016, 36(5): 1564-1576.
doi: 10.1523/JNEUROSCI.0511-15.2016 pmid: 26843638 |
[50] |
Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C, Leonoudakis D, Lariosa-Willingham K, Kronenberg G, Gertz K, Soderling SH, Miller RH, Barres BA. CNS myelin wrapping is driven by actin disassembly. Dev Cell, 2015, 34(2): 152-167.
doi: 10.1016/j.devcel.2015.06.011 pmid: 26166300 |
[51] |
Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen BE, van Ommen GJB, Blonden LA, Riggins GJ, Chastain JL, Kunst CB, Galjaard H, Caskey CT, Nelson DL, Oostra BA, Warren ST. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 1991, 65(5): 905-914.
pmid: 1710175 |
[52] |
Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, Witke W, Costa-Mattioli M, Sonenberg N, Achsel T, Bagni C. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell, 2008, 134(6): 1042-1054.
doi: 10.1016/j.cell.2008.07.031 pmid: 18805096 |
[53] |
Conn CS, Yang HJ, Tom HJ, Ikeda K, Oses-Prieto JA, Vu H, Oguri Y, Nair S, Gill RM, Kajimura S, DeBerardinis RJ, Burlingame AL, Ruggero D. The major cap-binding protein eIF4E regulates lipid homeostasis and diet-induced obesity. Nat Metab, 2021, 3(2): 244-257.
doi: 10.1038/s42255-021-00349-z pmid: 33619378 |
[54] |
Abreu AP, Toro CA, Song YB, Navarro VM, Bosch MA, Eren A, Liang JN, Carroll RS, Latronico AC, Rønnekleiv OK, Aylwin CF, Lomniczi A, Ojeda S, Kaiser UB. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest, 2020, 130(8): 4486-4500.
doi: 10.1172/JCI136564 pmid: 32407292 |
[55] |
Macedo DB, Abreu AP, Reis ACS, Montenegro LR, Dauber A, Beneduzzi D, Cukier P, Silveira LFG, Teles MG, Carroll RS, Junior GG, Filho GG, Gucev Z, Arnhold IJP, de Castro M, Moreira AC, Martinelli CE, Hirschhorn JN, Mendonca BB, Brito VN, Antonini SR, Kaiser UB, Latronico AC.Central precocious puberty that appears to be sporadic caused by paternally inherited mutations in the imprinted gene makorin ring finger 3. J Clin Endocrinol Metab, 2014, 99(6): E1097-E1103.
doi: 10.1210/jc.2013-3126 |
[56] | Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, Cukier P, Thompson IR, Navarro VM, Gagliardi PC, Rodrigues T, Kochi C, Longui CA, Beckers D, de Zegher F, Montenegro LR, Mendonca BB, Carroll RS, Hirschhorn JN, Latronico AC, Kaiser UB.Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med, 2013, 368(26): 2467-2475. |
[57] |
Crinò A, Di Giorgio G, Schiaffini R, Fierabracci A, Spera S, Maggioni A, Gattinara GC. Central precocious puberty and growth hormone deficiency in a boy with Prader-Willi syndrome. Eur J Pediatr, 2008, 167(12): 1455-1458.
doi: 10.1007/s00431-008-0679-0 pmid: 18301920 |
[58] | Ludwig NG, Radaeli RF, Silva MMX, Romero CM, Carrilho AJF, Bessa D, Macedo DB, Oliveira ML, Latronico AC, Mazzuco TL. A boy with Prader-Willi syndrome: unmasking precocious puberty during growth hormone replacement therapy. Arch Endocrinol Metab, 2016, 60(6): 596-600. |
[59] |
Barreiro ML, Tena-Sempere M. Ghrelin and reproduction: a novel signal linking energy status and fertility? Mol Cell Endocrinol, 2004, 226(1-2): 1-9.
pmid: 15488999 |
[60] |
Bischof JM, Stewart CL, Wevrick R. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum Mol Genet, 2007, 16(22): 2713-2719.
pmid: 17728320 |
[61] |
Buiting K, Di Donato N, Beygo J, Bens S, von der Hagen M, Hackmann K, Horsthemke B. Clinical phenotypes of MAGEL2 mutations and deletions. Orphanet J Rare Dis, 2014, 9: 40.
doi: 10.1186/1750-1172-9-40 pmid: 24661356 |
[62] |
Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang BL, Peters BA, McElwain MA, Drmanac R, Beaudet AL, Caskey CT, Yang YP. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet, 2013, 45(11): 1405-1408.
doi: 10.1038/ng.2776 pmid: 24076603 |
[63] |
Tacer KF, Potts PR.Cellular and disease functions of the Prader-Willi Syndrome gene MAGEL2. Biochem J, 2017, 474(13): 2177-2190.
doi: 10.1042/BCJ20160616 pmid: 28626083 |
[64] |
Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA, 1998, 95(25): 15043-15048.
doi: 10.1073/pnas.95.25.15043 |
[65] |
Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci, 2005, 8(5): 571-578.
doi: 10.1038/nn1455 pmid: 15856065 |
[66] |
Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell, 2013, 152(5): 1051-1064.
doi: 10.1016/j.cell.2013.01.051 |
[67] |
Maillard J, Park S, Croizier S, Vanacker C, Cook JH, Prevot V, Tauber M, Bouret SG. Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Hum Mol Genet, 2016, 25(15): 3208-3215.
doi: 10.1093/hmg/ddw169 pmid: 27288456 |
[68] | Swaab DF, Purba JS, Hofman MA. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J Clin Endocrinol Metab, 1995, 80(2): 573-579. |
[69] |
Ates T, Oncul M, Dilsiz P, Topcu IC, Civas CC, Alp MI, Aklan I, Ates Oz E, Yavuz Y, Yilmaz B, Sayar Atasoy N, Atasoy D. Inactivation of Magel2 suppresses oxytocin neurons through synaptic excitation-inhibition imbalance. Neurobiol Dis, 2019, 121: 58-64.
doi: S0969-9961(18)30395-4 pmid: 30240706 |
[70] |
Grinevich V, Knobloch-Bollmann HS, Eliava M, Busnelli M, Chini B. Assembling the puzzle: pathways of oxytocin signaling in the brain. Biol Psychiatry, 2016, 79(3): 155-164.
doi: 10.1016/j.biopsych.2015.04.013 |
[71] |
Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet, 2010, 19(24): 4895-4905.
doi: 10.1093/hmg/ddq424 pmid: 20876615 |
[72] |
Hao YH, Fountain MD, Fon Tacer K, Xia F, Bi WM, Kang SHL, Patel A, Rosenfeld JA, Le Caignec C, Isidor B, Krantz ID, Noon SE, Pfotenhauer JP, Morgan TM, Moran R, Pedersen RC, Saenz MS, Schaaf CP, Potts PR. Usp7 acts as a molecular rheostat to promote WASH- dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. Mol Cell, 2015, 59(6): 956-969.
doi: 10.1016/j.molcel.2015.07.033 |
[73] |
Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S, Hogenesch JB, Muglia LJ, Van Gelder RN, Herzog ED, Stewart CL. The imprinted gene Magel2 regulates normal circadian output. Nat Genet, 2007, 39(10): 1266-1272.
pmid: 17893678 |
[74] |
Mercer RE, Wevrick R. Loss of magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice. PLoS One, 2009, 4(1): e4291.
doi: 10.1371/journal.pone.0004291 |
[75] |
Kobayashi M, Taniura H, Yoshikawa K. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J Biol Chem, 2002, 277(44): 42128-42135.
doi: 10.1074/jbc.M205024200 pmid: 12198120 |
[76] |
Taniura H, Taniguchi N, Hara M, Yoshikawa K.Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem, 1998, 273(2): 720-728.
doi: 10.1074/jbc.273.2.720 pmid: 9422723 |
[77] |
Uetsuki T, Takagi K, Sugiura H, Yoshikawa K. Structure and expression of the mouse necdin gene. Identification of a postmitotic neuron-restrictive core promoter. J Biol Chem, 1996, 271(2): 918-924.
doi: 10.1074/jbc.271.2.918 pmid: 8557705 |
[78] |
Taniura H, Matsumoto K, Yoshikawa K.Physical and functional interactions of neuronal growth suppressor necdin with p53. J Biol Chem, 1999, 274(23): 16242-16248.
doi: 10.1074/jbc.274.23.16242 pmid: 10347180 |
[79] |
Gérard M, Hernandez L, Wevrick R, Stewart CL. Disruption of the mouse necdin gene results in early post-natal lethality. Nat Genet, 1999, 23(2): 199-202.
pmid: 10508517 |
[80] |
Andrieu D, Watrin F, Niinobe M, Yoshikawa K, Muscatelli F, Fernandez PA. Expression of the Prader-Willi gene Necdin during mouse nervous system development correlates with neuronal differentiation and p75NTR expression. Gene Expr Patterns, 2003, 3(6): 761-765.
pmid: 14643685 |
[81] |
Matarazzo V, Caccialupi L, Schaller F, Shvarev Y, Kourdougli N, Bertoni A, Menuet C, Voituron N, Deneris E, Gaspar P, Bezin L, Durbec P, Hilaire G, Muscatelli F. Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome. eLife, 2017, 6: e32640.
doi: 10.7554/eLife.32640 |
[82] |
Lee S, Walker CL, Karten B, Kuny SL, Tennese AA, O'Neill MA, Wevrick R. Essential role for the Prader- Willi syndrome protein necdin in axonal outgrowth. Hum Mol Genet, 2005, 14(5): 627-637.
doi: 10.1093/hmg/ddi059 |
[83] |
Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the prader-willi syndrome gene necdin. Am J Pathol, 2005, 167(1): 175-191.
pmid: 15972963 |
[84] |
Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, Cremer H. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet, 2000, 9(20): 3101-3110.
pmid: 11115855 |
[85] | Swaab DF. Prader-Willi syndrome and the hypothalamus. Acta Paediatr Suppl, 1997, 423: 50-54. |
[86] |
Takazaki R, Nishimura I, Yoshikawa K. Necdin is required for terminal differentiation and survival of primary dorsal root ganglion neurons. Exp Cell Res, 2002, 277(2): 220-232.
pmid: 12083804 |
[87] |
Lu RB, Dong YF, Li JD.Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery. Nucleic Acids Res, 2020, 48(14): 7944-7957.
doi: 10.1093/nar/gkaa601 pmid: 32667666 |
[88] |
Hogenboom R, Kalsbeek MJ, Korpel NL, de Goede P, Koenen M, Buijs RM, Romijn JA, Swaab DF, Kalsbeek A, Yi CX. Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes. Diabetologia, 2019, 62(11): 2088-2093.
doi: 10.1007/s00125-019-4953-7 pmid: 31327049 |
[89] |
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res, 2020, 48(4): 1627-1651.
doi: 10.1093/nar/gkz1140 pmid: 31828325 |
[90] |
de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GSH, O'Rahilly S, Froguel P, Farooqi IS, Blakemore AIF. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet, 2009, 18(17): 3257-3265.
doi: 10.1093/hmg/ddp263 pmid: 19498035 |
[91] |
Lassi G, Maggi S, Balzani E, Cosentini I, Garcia-Garcia C, Tucci V. Working-for-food behaviors: a preclinical study in Prader-Willi mutant mice. Genetics, 2016, 204(3): 1129-1138.
doi: 10.1534/genetics.116.192286 pmid: 27672097 |
[92] |
Polex-Wolf J, Lam BY, Larder R, Tadross J, Rimmington D, Bosch F, Cenzano VJ, Ayuso E, Ma MK, Rainbow K, Coll AP, O'Rahilly S, Yeo GS. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome. J Clin Invest, 2018, 128(3): 960-969.
doi: 10.1172/JCI97007 pmid: 29376887 |
[93] |
Qi Y, Purtell L, Fu M, Lee NJ, Aepler J, Zhang L, Loh K, Enriquez RF, Baldock PA, Zolotukhin S, Campbell LV, Herzog H. Snord 116 is critical in the regulation of food intake and body weight. Sci Rep, 2016, 6: 18614.
doi: 10.1038/srep18614 |
[94] |
Qi Y, Purtell L, Fu M, Zhang L, Zolotukhin S, Campbell L, Herzog H. Hypothalamus specific re-introduction of SNORD116 into otherwise Snord116 deficient mice increased energy expenditure. J Neuroendocrinol, 2017, 29(10). doi: 10.1111/jne.12457.
doi: 10.1111/jne.12457 |
[95] |
Zhang Q, Bouma GJ, McClellan K, Tobet S. Hypothalamic expression of snoRNA Snord116 is consistent with a link to the hyperphagia and obesity symptoms of Prader-Willi syndrome. Int J Dev Neurosci, 2012, 30(6): 479-485.
doi: 10.1016/j.ijdevneu.2012.05.005 pmid: 22664655 |
[96] |
Purtell L, Qi Y, Campbell L, Sainsbury A, Herzog H. Adult-onset deletion of the Prader-Willi syndrome susceptibility gene Snord116 in mice results in reduced feeding and increased fat mass. Transl Pediatr, 2017, 6(2): 88-97.
doi: 10.21037/tp.2017.03.06 pmid: 28503414 |
[97] |
Kufel J, Grzechnik P. Small nucleolar RNAs tell a different tale. Trends Genet, 2019, 35(2): 104-117.
doi: S0168-9525(18)30203-8 pmid: 30563726 |
[98] |
Lassi G, Priano L, Maggi S, Garcia-Garcia C, Balzani E, El-Assawy N, Pagani M, Tinarelli F, Giardino D, Mauro A, Peters J, Gozzi A, Grugni G, Tucci V. Deletion of the Snord116/SNORD116 alters sleep in mice and patients with Prader-Willi syndrome. Sleep, 2016, 39(3): 637-644.
doi: 10.5665/sleep.5542 pmid: 26446116 |
[99] |
Resnick JL, Nicholls RD, Wevrick R, Prader-Willi Syndrome Animal Models Working Group. Recommendations for the investigation of animal models of Prader-Willi syndrome. Mamm Genome, 2013, 24(5-6): 165-178.
doi: 10.1007/s00335-013-9454-2 pmid: 23609791 |
[100] |
Schöne C, Burdakov D. Orexin/hypocretin and organizing principles for a diversity of wake-promoting neurons in the brain. Curr Top Behav Neurosci, 2017, 33: 51-74.
doi: 10.1007/7854_2016_45 pmid: 27830577 |
[101] |
Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell, 1999, 98(4): 437-451.
pmid: 10481909 |
[102] |
Coulson RL, Yasui DH, Dunaway KW, Laufer BI, Vogel Ciernia A, Zhu YH, Mordaunt CE, Totah TS, LaSalle JM. Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat Commun, 2018, 9(1): 1616.
doi: 10.1038/s41467-018-03676-0 pmid: 29691382 |
[103] |
Krauchi K, Deboer T. The interrelationship between sleep regulation and thermoregulation. Front Biosci (Landmark Ed), 2010, 15(2): 604-625.
doi: 10.2741/3636 pmid: 20036836 |
[104] |
Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, Tupone D, Zamboni G, Amici R. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One, 2014, 9(11): e112849.
doi: 10.1371/journal.pone.0112849 |
[105] |
Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin), 2015, 2(3): 379-391.
doi: 10.1080/23328940.2015.1066921 pmid: 27227052 |
[106] |
Butler MG. Hypopigmentation: a common feature of Prader-Labhart-Willi syndrome. Am J Hum Genet, 1989, 45(1): 140-146.
pmid: 2741944 |
[107] |
Ji Y, Rebert NA, Joslin JM, Higgins MJ, Schultz RA, Nicholls RD. Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human. Genome Res, 2000, 10(3): 319-329.
doi: 10.1101/gr.10.3.319 pmid: 10720573 |
[108] |
Ji Y, Walkowicz MJ, Buiting K, Johnson DK, Tarvin RE, Rinchik EM, Horsthemke B, Stubbs L, Nicholls RD. The ancestral gene for transcribed, low-copy repeats in the Prader-Willi/Angelman region encodes a large protein implicated in protein trafficking, which is deficient in mice with neuromuscular and spermiogenic abnormalities. Hum Mol Genet, 1999, 8(3): 533-542.
doi: 10.1093/hmg/8.3.533 pmid: 9949213 |
[109] |
Baxter LR, Saxena S, Brody AL, Ackermann RF, Colgan M, Schwartz JM, Allen-Martinez Z, Fuster JM, Phelps ME. Brain mediation of obsessive-compulsive disorder symptoms: evidence from functional brain imaging studies in the human and nonhuman primate. Semin Clin Neuropsychiatry, 1996, 1(1): 32-47.
pmid: 10229782 |
[110] |
Berninger B, Marty S, Zafra F, da Penha Berzaghi M, Thoenen H, Lindholm D. GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development, 1995, 121(8): 2327-2335.
doi: 10.1242/dev.121.8.2327 pmid: 7671799 |
[111] |
Horvath TL, Bechmann I, Naftolin F, Kalra SP, Leranth C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res, 1997, 756(1-2): 283-286.
pmid: 9187344 |
[112] |
Kim Y, Lee HM, Xiong Y, Sciaky N, Hulbert SW, Cao XY, Everitt JI, Jin J, Roth BL, Jiang YH. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome. Nat Med, 2017, 23(2): 213-222.
doi: 10.1038/nm.4257 pmid: 28024084 |
[113] |
Kim Y, Wang SE, Jiang YH. Epigenetic therapy of Prader-Willi syndrome. Transl Res, 2019, 208: 105-118.
doi: S1931-5244(19)30048-9 pmid: 30904443 |
[114] | Huang WK, Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, Zhang ZJ, Lu L, Fang WQ, Chen LY, Fernandes A, Su YJ, Song HJ, Ming GL. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Ccell, 2021, 28(9): 1657-1670.e10. |
[1] | 王奔, 李斯, 吴青峰, 穆文辉. 生酮饮食激活脂肪酸氧化促进ME区的少突胶质细胞前体细胞增殖[J]. 遗传, 2023, 45(5): 425-434. |
[2] | 何晓红, 蒋琳, 浦亚斌, 赵倩君, 马月辉. 牛、绵羊角的遗传定位及遗传机制研究进展[J]. 遗传, 2021, 43(1): 40-51. |
[3] | 任巧玲, 张家庆, 陆东锋, 王璟, 陈俊峰, 马强, 白献晓, 郭红霞, 高彬文, 邢宝松. 乏情和发情初产母猪下丘脑-垂体-卵巢轴中lincRNAs表达谱比较分析[J]. 遗传, 2020, 42(4): 388-402. |
[4] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[5] | 李平华, 马翔, 张叶秋, 张倩, 黄瑞华. 影响二花脸猪高产仔性能的生理及遗传机制研究进展[J]. 遗传, 2017, 39(11): 1016-1024. |
[6] | 殷丽琴, 付绍红, 杨进, 李云, 王继胜, 王茂林. 植物单倍体的产生、鉴定、形成机理及应用[J]. 遗传, 2016, 38(11): 979-991. |
[7] | 高磊,甘尚权,杨井泉,杨剑波,梁耀伟,阿不都艾尼·努拉洪,沈敏. 绵羊发情周期不同组织Cry1 mRNA转录水平相对定量研究[J]. 遗传, 2013, 35(1): 85-92. |
[8] | 郭晓强. 抗体多样性遗传机制发现者——利根川进[J]. 遗传, 2012, 34(11): 1501-1504. |
[9] | 杨永强,李凡. SNCA基因在酒精依赖遗传机制中的研究进展[J]. 遗传, 2010, 32(11): 1114-1118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: