遗传 ›› 2025, Vol. 47 ›› Issue (2): 147-171.doi: 10.16288/j.yczz.24-215
• 综述 • 下一篇
沈洁宇1,2(), 苏天晗1,2(
), 余大奇3, 谭生军1(
), 张勇1,2(
)
收稿日期:
2024-07-21
修回日期:
2024-09-01
出版日期:
2025-02-20
发布日期:
2024-10-21
通讯作者:
张勇,博士,研究员,研究方向:演化基因组学。E-mail: zhangyong@ioz.ac.cn;作者简介:
沈洁宇,博士研究生,专业方向:演化基因组学。E-mail: shenjieyu@ioz.ac.cn沈洁宇和苏天晗并列第一作者。
基金资助:
Jieyu Shen1,2(), Tianhan Su1,2(
), Daqi Yu3, Shengjun Tan1(
), Yong E. Zhang1,2(
)
Received:
2024-07-21
Revised:
2024-09-01
Published:
2025-02-20
Online:
2024-10-21
Supported by:
摘要:
基因重复指基因组中一个基因通过多样化的分子机制从一个基因拷贝形成两个或多个重复拷贝的过程,是新基因起源的重要途径之一,对真核生物基因组贡献了约为一半的基因,也推动了物种的适应性演化。在过去50年中,特别是近20年进入组学时代以来,演化遗传学领域对于重复基因的产生机制、演化历程与演化动力展开了广泛而深入的讨论。一方面,重复基因的序列相似性带来的功能冗余使机体具有更强的稳健性;另一方面,重复基因的功能分歧带来了新功能与可演化性的提升。本文全面介绍了上述基因重复的机制、重复基因的命运及演化模型,最后展望了三代测序技术、基因编辑等各种高通量技术将进一步推动重复基因在遗传-发育-演化网络中角色的解析。
沈洁宇, 苏天晗, 余大奇, 谭生军, 张勇. 基因重复驱动的演化:基因组学时代的回顾与展望[J]. 遗传, 2025, 47(2): 147-171.
Jieyu Shen, Tianhan Su, Daqi Yu, Shengjun Tan, Yong E. Zhang. Evolution by gene duplication: in the era of genomics[J]. Hereditas(Beijing), 2025, 47(2): 147-171.
[1] |
Bridges CB. The Bar “Gene” a Duplication. Science, 1936, 83(2148): 210-211.
doi: 10.1126/science.83.2148.210 pmid: 17796454 |
[2] | Kilmartin JV, Clegg JB. Amino-acid replacements in horse haemoglobin. Nature, 1967, 213(5073): 269-271. |
[3] |
Koler RD, Bigley RH, Jones RT, Rigas DA, Vanbellinghen P, Thompson P. Pyruvate kinase: molecular differences between human red cell and leukocyte enzyme. Cold Spring Harb Symp Quant Biol, 1964, 29: 212-221.
pmid: 14278468 |
[4] |
Lennox ES, Cohn M. Immunoglobulins. Annu Rev Biochem, 1967, 36: 365-406.
pmid: 18257726 |
[5] | Ohno S. Evolution by Gene Duplication. London:George Alien & Unwin Ltd. Berlin, Heidelberg and New York: Springer-Verlag, 1970. |
[6] |
Kimura M, Ohta T. On some principles governing molecular evolution. Proc Natl Acad Sci USA, 1974, 71(7): 2848-2852.
pmid: 4527913 |
[7] |
Ohta T. Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor Popul Biol, 1976, 10(3): 254-275.
doi: 10.1016/0040-5809(76)90019-8 pmid: 1013905 |
[8] |
Ohta T. Simulating evolution by gene duplication. Genetics, 1987, 115(1): 207-213.
doi: 10.1093/genetics/115.1.207 pmid: 3557113 |
[9] |
Ohta T. Further simulation studies on evolution by gene duplication. Evolution, 1988, 42(2): 375-386.
doi: 10.1111/j.1558-5646.1988.tb04140.x pmid: 28567848 |
[10] |
Ohta T. Time for acquiring a new gene by duplication. Proc Natl Acad Sci USA, 1988, 85(10): 3509-3512.
pmid: 3368461 |
[11] | Zhang JZ. Evolution by gene duplication: an update. Trends Ecol Evol, 2003, 18(6): 292-298. |
[12] |
Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet, 2009, 10(8): 551-564.
doi: 10.1038/nrg2593 pmid: 19597530 |
[13] |
Tan SJ, Cardoso-Moreira M, Shi WW, Zhang D, Huang JW, Mao YN, Jia HX, Zhang YQ, Chen CY, Shao Y, Leng L, Liu ZH, Huang X, Long MY, Zhang YE. LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans. Genome Res, 2016, 26(12): 1663-1675.
pmid: 27934698 |
[14] |
Tan SJ, Ma HJ, Wang JB, Wang M, Wang MX, Yin HD, Zhang YQ, Zhang XY, Shen JY, Wang DY, Banes GL, Zhang ZH, Wu JM, Huang X, Chen H, Ge SQ, Chen CL, Zhang YE. DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nat Commun, 2021, 12(1): 4280.
doi: 10.1038/s41467-021-24585-9 pmid: 34257290 |
[15] | Maloy S, Hughes K. Brenner's Encyclopedia of Genetics. Elsevier Scienen Publisher, 2013, 252-256. |
[16] | Zhang D, Leng L, Chen CY, Huang JW, Zhang YQ, Yuan H, Ma CY, Chen H, Zhang YE. Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans. Nat Ecol Evol, 2022, 6(3): 273-287. |
[17] |
Kaufman J. Unfinished Business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol, 2018, 36: 383-409.
doi: 10.1146/annurev-immunol-051116-052450 pmid: 29677478 |
[18] |
Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet, 2010, 11(1): 47-59.
doi: 10.1038/nrg2703 pmid: 19997068 |
[19] | Hardison RC. Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med, 2012, 2(12): a011627. |
[20] |
Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, Gordon L, Branscomb E, Stubbs L. A comprehensive catalog of human KRAB-associated zinc finger genes: Insights into the evolutionary history of a large family of transcriptional repressors. Genome Res, 2006, 16(5): 669-677.
doi: 10.1101/gr.4842106 pmid: 16606702 |
[21] |
Hamilton AT, Huntley S, Tran-Gyamfi M, Baggott DM, Gordon L, Stubbs L. Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes. Genome Res, 2006, 16(5): 584-594.
doi: 10.1101/gr.4843906 pmid: 16606703 |
[22] | Farmiloe G, Lodewijk GA, Robben SF, Van Bree EJ, Jacobs FMJ. Widespread correlation of KRAB zinc finger protein binding with brain-developmental gene expression patterns. Philos Trans R Soc Lond B Biol Sci, 2020, 375(1795): 20190333. |
[23] | Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature, 2017, 543(7646): 550-554. |
[24] |
Thomas JH, Emerson RO. Evolution of C2H2-zinc finger genes revisited. BMC Evol Biol, 2009, 9: 51.
doi: 10.1186/1471-2148-9-51 pmid: 19261184 |
[25] | Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, Paten B, Salama SR, Haussler D. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature, 2014, 516(7530): 242-245. |
[26] |
Samonte RV, Eichler EE. Segmental duplications and the evolution of the primate genome. Nat Rev Genet, 2002, 3(1): 65-72.
pmid: 11823792 |
[27] |
Bailey JA, Liu G, Eichler EE. An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet, 2003, 73(4): 823-834.
doi: 10.1086/378594 pmid: 14505274 |
[28] |
Kidd JM, Graves T, Newman TL, Fulton R, Hayden HS, Malig M, Kallicki J, Kaul R, Wilson RK, Eichler EE. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell, 2010, 143(5): 837-847.
doi: 10.1016/j.cell.2010.10.027 pmid: 21111241 |
[29] |
Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet, 2002, 3(5): 370-379.
doi: 10.1038/nrg798 pmid: 11988762 |
[30] |
Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, Nefedov M, Rosenfeld JA, Sajjadian S, Malig M, Kotkiewicz H, Curry CJ, Shafer S, Shaffer LG, de Jong PJ, Wilson RK, Eichler EE. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell, 2012, 149(4): 912-922.
doi: 10.1016/j.cell.2012.03.033 pmid: 22559943 |
[31] |
Fiddes IT, Lodewijk GA, Mooring M, Bosworth CM, Ewing AD, Mantalas GL, Novak AM, van den Bout A, Bishara A, Rosenkrantz JL, Lorig-Roach R, Field AR, Haeussler M, Russo L, Bhaduri A, Nowakowski TJ, Pollen AA, Dougherty ML, Nuttle X, Addor MC, Zwolinski S, Katzman S, Kriegstein A, Eichler EE, Salama SR, Jacobs FMJ, Haussler D. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell, 2018, 173(6): 1356-1369.e22.
doi: S0092-8674(18)30383-0 pmid: 29856954 |
[32] | Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AP, Hoekzema K, Porubsky D, Li RY, Nurk S, Koren S, Miga KH, Phillippy AM, Timp W, Ventura M, Eichler EE. Segmental duplications and their variation in a complete human genome. Science, 2022, 376(6588): eabj6965. |
[33] |
Feng Q, Moran JV, Kazazian HH, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell, 1996, 87(5): 905-916.
doi: 10.1016/s0092-8674(00)81997-2 pmid: 8945517 |
[34] |
Kaessmann H, Vinckenbosch N, Long MY. RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet, 2009, 10(1): 19-31.
doi: 10.1038/nrg2487 pmid: 19030023 |
[35] | Zhu ZL, Tan SJ, Zhang YQ, Zhang YE. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots. Sci Rep, 2016, 6(1): 24755. |
[36] |
Moran JV, DeBerardinis RJ, Kazazian HH. Exon shuffling by L1 retrotransposition. Science, 1999, 283(5407): 1530-1534.
doi: 10.1126/science.283.5407.1530 pmid: 10066175 |
[37] |
Long M, Langley CH. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science, 1993, 260(5104): 91-95.
pmid: 7682012 |
[38] |
Wang W, Brunet FG, Nevo E, Long MY. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA, 2002, 99(7): 4448-4453.
pmid: 11904380 |
[39] |
Gilbert N, Lutz S, Morrish TA, Moran JV. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol, 2005, 25(17): 7780-7795.
doi: 10.1128/MCB.25.17.7780-7795.2005 pmid: 16107723 |
[40] |
Buzdin A, Gogvadze E, Kovalskaya E, Volchkov P, Ustyugova S, Illarionova A, Fushan A, Vinogradova T, Sverdlov E. The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. Nucleic Acids Res, 2003, 31(15): 4385-4390.
doi: 10.1093/nar/gkg496 pmid: 12888497 |
[41] |
Wang W, Zhang J, Alvarez C, Llopart A, Long M. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol Biol Evol, 2000, 17(9): 1294-1301.
pmid: 10958846 |
[42] | Zhang JM, Dean AM, Brunet F, Long MY. Evolving protein functional diversity in new genes of Drosophila. Proc Natl Acad Sci USA, 2004, 101(46): 16246-16250. |
[43] |
Wolfe KH. Yesterday's polyploids and the mystery of diploidization. Nat Rev Genet, 2001, 2(5): 333-341.
doi: 10.1038/35072009 pmid: 11331899 |
[44] | Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJC, Fujiyama A, Harland RM, Taira M, Rokhsar DS. Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538(7625): 336-343. |
[45] |
Simakov O, Marlétaz F, Yue JX, O'Connell B, Jenkins J, Brandt A, Calef R, Tung CH, Huang TK, Schmutz J, Satoh N, Yu JK, Putnam NH, Green RE, Rokhsar DS. Deeply conserved synteny resolves early events in vertebrate evolution. Nat Ecol Evol, 2020, 4(6): 820-830.
doi: 10.1038/s41559-020-1156-z pmid: 32313176 |
[46] |
Session AM, Rokhsar DS. Transposon signatures of allopolyploid genome evolution. Nat Commun, 2023, 14(1): 3180.
doi: 10.1038/s41467-023-38560-z pmid: 37263993 |
[47] | Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 2004, 428(6983): 617-624. |
[48] |
De Bodt S, Maere S, Van de Peer Y. Genome duplication and the origin of angiosperms. Trends Ecol Evol, 2005, 20(11): 591-597.
doi: 10.1016/j.tree.2005.07.008 pmid: 16701441 |
[49] | Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P. French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7161): 463-467. |
[50] |
Ren R, Wang HF, Guo CC, Zhang N, Zeng LP, Chen YM, Ma H, Qi J. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant, 2018, 11(3): 414-428.
doi: S1674-2052(18)30022-4 pmid: 29317285 |
[51] | Almeida-Silva F, Van de Peer Y. Whole-genome duplications and the long-term evolution of gene regulatory networks in angiosperms. Mol Biol Evol, 2023, 40(7): msad141. |
[52] |
Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol, 1999, 11(6): 699-704.
pmid: 10600714 |
[53] | Holland PW, Garcia-Fernàndez J, Williams NA, Sidow A. Gene duplications and the origins of vertebrate development. Dev Suppl, 1994, 125-133. |
[54] |
Hughes AL. Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol, 1999, 48(5): 565-576.
pmid: 10198122 |
[55] |
Wolfe K. Robustness--it's not where you think it is. Nat Genet, 2000, 25(1): 3-4.
doi: 10.1038/75560 pmid: 10802639 |
[56] | Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol, 2005, 3(10): e314. |
[57] | Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS. The amphioxus genome and the evolution of the chordate karyotype. Nature, 2008, 453(7198): 1064-1071. |
[58] | Marlétaz F, Timoshevskaya N, Timoshevskiy VA, Parey E, Simakov O, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith JJ, Rokhsar DS. The hagfish genome and the evolution of vertebrates. Nature, 2024, 627(8005): 811-820. |
[59] | Yu DQ, Ren YD, Uesaka M, Beavan AJS, Muffato M, Shen JY, Li YX, Sato I, Wan WT, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng GJ, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol, 2024, 8(3): 519-535. |
[60] |
Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays, 2005, 27(9): 937-945.
doi: 10.1002/bies.20293 pmid: 16108068 |
[61] | Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Crollius HR. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431(7011): 946-957. |
[62] | Pannell JR. Plant sex determination. Curr Biol, 2017, 27(5): R191-R197. |
[63] | Gamble T, Zarkower D. Sex determination. Curr Biol, 2012, 22(8): R257-R262. |
[64] |
Wertheim B, Beukeboom LW, van de Zande L. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet Genome Res, 2013, 140(2-4): 256-269.
doi: 10.1159/000351998 pmid: 23817224 |
[65] | Mable BK. ‘Why polyploidy is rarer in animals than in plants': myths and mechanisms. Biol J Linn Soc, 2004, 82(4): 453-466. |
[66] | Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JKA, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Våge DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang XT, Fan DD, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJM, Jonassen I, Maass A, Omholt SW, Davidson WS. The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533(7602): 200-205. |
[67] | Krabbenhoft TJ, MacGuigan DJ, Backenstose NJC, Waterman H, Lan TY, Pelosi JA, Tan M, Sandve SR. Chromosome-level genome assembly of Chinese sucker (Myxocyprinus asiaticus) reveals strongly conserved synteny following a catostomid-specific whole-genome duplication. Genome Biol Evol, 2021, 13(9): evab190. |
[68] | Xu P, Zhang XF, Wang XM, Li JT, Liu GM, Kuang YY, Xu J, Zheng XH, Ren LF, Wang GL, Zhang Y, Huo LH, Zhao ZX, Cao DC, Lu CY, Li C, Zhou Y, Liu ZJ, Fan ZH, Shan GL, Li XG, Wu SX, Song LP, Hou GY, Jiang YL, Jeney Z, Yu D, Wang L, Shao CJ, Song L, Sun J, Ji PF, Wang J, Li Q, Xu LM, Sun FY, Feng JX, Wang CH, Wang SL, Wang BS, Li Y, Zhu YP, Xue W, Zhao L, Wang JT, Gu Y, Lv WH, Wu KJ, Xiao JF, Wu JY, Zhang Z, Yu J, Sun XW. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet, 2014, 46(11): 1212-1219. |
[69] | Chen ZL, Omori Y, Koren S, Shirokiya T, Kuroda T, Miyamoto A, Wada H, Fujiyama A, Toyoda A, Zhang SY, Wolfsberg TG, Kawakami K, Phillippy AM, NISC Comparative Sequencing Program, Mullikin JC, Burgess SM. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole- genome duplication. Sci Adv, 2019, 5(6): eaav0547. |
[70] |
Shimeld SM, Holland PW. Vertebrate innovations. Proc Natl Acad Sci USA, 2000, 97(9): 4449-4452.
pmid: 10781042 |
[71] |
Marsit S, Hénault M, Charron G, Fijarczyk A, Landry CR. The neutral rate of whole-genome duplication varies among yeast species and their hybrids. Nat Commun, 2021, 12(1): 3126.
doi: 10.1038/s41467-021-23231-8 pmid: 34035259 |
[72] |
Minguillon C, Gibson-Brown JJ, Logan MP. Tbx4/5 gene duplication and the origin of vertebrate paired appendages. Proc Natl Acad Sci USA, 2009, 106(51): 21726-21730.
doi: 10.1073/pnas.0910153106 pmid: 19995988 |
[73] |
Anatskaya OV, Vinogradov AE. Whole-genome duplications in evolution, ontogeny, and pathology: complexity and emergency reserves. Mol Biol (Mosk), 2021, 55(6): 927-943.
doi: 10.31857/S0026898421060021 pmid: 34837697 |
[74] |
Gentric G, Desdouets C. Polyploidization in liver tissue. Am J Pathol, 2014, 184(2): 322-331.
doi: 10.1016/j.ajpath.2013.06.035 pmid: 24140012 |
[75] |
Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol, 2011, 27: 585-610.
doi: 10.1146/annurev-cellbio-092910-154234 pmid: 21801013 |
[76] |
Li WH. Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. Genetics, 1980, 95(1): 237-258.
doi: 10.1093/genetics/95.1.237 pmid: 7429144 |
[77] | Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res, 1990, 231(2): 177-186. |
[78] |
Sémon M, Wolfe KH. Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet, 2007, 23(3): 108-112.
pmid: 17275132 |
[79] | Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature, 2006, 440(7082): 341-345. |
[80] |
McGrath CL, Gout JF, Johri P, Doak TG, Lynch M. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res, 2014, 24(10): 1665-1675.
doi: 10.1101/gr.173740.114 pmid: 25085612 |
[81] |
Ferris SD, Whitt GS. Duplicate gene expression in diploid and tetraploid loaches (Cypriniformes, Cobitidae). Biochem Genet, 1977, 15(11-12): 1097-1112.
pmid: 603616 |
[82] | Ferris SD, Whitt GS. Loss of duplicate gene expression after polyploidisation. Nature, 1977, 265(5591): 258-260. |
[83] | Ferris SD, Whitt GS. Genetic variability in species with extensive gene duplication: the tetraploid Catostomid fishes. Am Nat, 1980, 115(5): 650-666. |
[84] |
Inoue J, Sato Y, Sinclair R, Tsukamoto K, Nishida M. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci USA, 2015, 112(48): 14918-14923.
doi: 10.1073/pnas.1507669112 pmid: 26578810 |
[85] |
Makino T, McLysaght A. Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci USA, 2010, 107(20): 9270-9274.
doi: 10.1073/pnas.0914697107 pmid: 20439718 |
[86] |
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290(5494): 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452 |
[87] | Yang HW, He BZ, Ma HJ, Tsaur SC, Ma CY, Wu Y, Ting CT, Zhang YE. Expression profile and gene age jointly shaped the genome-wide distribution of premature termination codons in a Drosophila melanogaster population. Mol Biol Evol, 2015, 32(1): 216-228. |
[88] |
McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, Hinaux H, Jeffery WR, Keene A, Ma L, Minx P, Murphy D, O'Quin KE, Rétaux S, Rohner N, Searle SMJ, Stahl BA, Tabin C, Volff JN, Yoshizawa M, Warren WC. The cavefish genome reveals candidate genes for eye loss. Nat Commun, 2014, 5: 5307.
doi: 10.1038/ncomms6307 pmid: 25329095 |
[89] |
Takahata N, Maruyama T. Polymorphism and loss of duplicate gene expression: a theoretical study with application of tetraploid fish. Proc Natl Acad Sci USA, 1979, 76(9): 4521-4525.
pmid: 291985 |
[90] |
Bailey GS, Poulter RT, Stockwell PA. Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci USA, 1978, 75(11): 5575-5579.
pmid: 281706 |
[91] |
Hu WJ, Hao ZQ, Du PY, Di Vincenzo F, Manzi G, Cui JL, Fu YX, Pan YH, Li HP. Genomic inference of a severe human bottleneck during the early to middle Pleistocene transition. Science, 2023, 381(6661): 979-984.
doi: 10.1126/science.abq7487 pmid: 37651513 |
[92] |
Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, Visscher PM. Recent human effective population size estimated from linkage disequilibrium. Genome Res, 2007, 17(4): 520-526.
doi: 10.1101/gr.6023607 pmid: 17351134 |
[93] |
Kitano H. Biological robustness. Nat Rev Genet, 2004, 5: 826-837.
doi: 10.1038/nrg1471 pmid: 15520792 |
[94] | Waddington CH. Canalization of development and the inheritance of acquired characters. Nature, 1942, 150: 563-565. |
[95] | Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature, 1998, 396(6709): 336-342. |
[96] |
Engel W, Schmidtke J, Vogel W, Wolf U. Genetic polymorphism of lactate dehydrogenase isoenzymes in the carp (Cyprinus carpio) apparently due to a "null allele". Biochem Genet, 1973, 8(3): 281-289.
pmid: 4701994 |
[97] |
MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng HC, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IHA, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue YL, Romero IG, 1000 Genomes Project Consortium, Wang J, Li YR, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C. A systematic survey of loss-of-function variants in human protein- coding genes. Science, 2012, 335(6070): 823-828.
doi: 10.1126/science.1215040 pmid: 22344438 |
[98] |
Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics, 2014, 197(2): 451-465.
doi: 10.1534/genetics.114.161620 pmid: 24939991 |
[99] |
Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, de Angelis MH, Brown SD, Herault Y. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome, 2012, 23(9-10): 600-610.
doi: 10.1007/s00335-012-9418-y pmid: 22961258 |
[100] |
Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR. Gene essentiality and synthetic lethality in haploid human cells. Science, 2015, 350(6264): 1092-1096.
doi: 10.1126/science.aac7557 pmid: 26472760 |
[101] |
Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM. Identification and characterization of essential genes in the human genome. Science, 2015, 350(6264): 1096-1101.
doi: 10.1126/science.aac7041 pmid: 26472758 |
[102] |
Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S, Mero P, Dirks P, Sidhu S, Roth FP, Rissland OS, Durocher D, Angers S, Moffat J. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell, 2015, 163(6): 1515-1526.
doi: 10.1016/j.cell.2015.11.015 pmid: 26627737 |
[103] | Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421(6920): 231-237. |
[104] | Conant GC, Wagner A. Duplicate genes and robustness to transient gene knock-downs in Caenorhabditis elegans. Proc Biol Sci, 2004, 271(1534): 89-96. |
[105] | Gu ZL, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH. Role of duplicate genes in genetic robustness against null mutations. Nature, 2003, 421(6918): 63-66. |
[106] | Chen WH, Trachana K, Lercher MJ, Bork P. Younger genes are less likely to be essential than older genes, and duplicates are less likely to be essential than singletons of the same age. Mol Biol Evol, 2012, 29(7): 1703-1706. |
[107] | Dandage R, Landry CR. Paralog dependency indirectly affects the robustness of human cells. Mol Syst Biol, 2019, 15(9): e8871. |
[108] | De Kegel B, Ryan CJ. Paralog buffering contributes to the variable essentiality of genes in cancer cell lines. PLoS Genet, 2019, 15(10): e1008466. |
[109] |
Su Z, Gu X. Predicting the proportion of essential genes in mouse duplicates based on biased mouse knockout genes. J Mol Evol, 2008, 67(6): 705-709.
doi: 10.1007/s00239-008-9170-9 pmid: 19005716 |
[110] | Bateson W, Mendel G. Mendel's Principles of Heredity. London: Cambridge University Press, 2010. |
[111] |
Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet, 2002, 11(20): 2463-2468.
doi: 10.1093/hmg/11.20.2463 pmid: 12351582 |
[112] |
He XL, Zhang JZ. Higher duplicability of less important genes in yeast genomes. Mol Biol Evol, 2006, 23(1): 144-151.
pmid: 16151181 |
[113] | Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan GH, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen YQ, Deshpande R, Kurat CF, Li SC, Li ZJ, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan YZ, Zhu HW, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C. A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353(6306): aaf1420. |
[114] | Dean EJ, Davis JC, Davis RW, Petrov DA. Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genet, 2008, 4(7): e1000113. |
[115] |
DeLuna A, Vetsigian K, Shoresh N, Hegreness M, Colón-González M, Chao S, Kishony R. Exposing the fitness contribution of duplicated genes. Nat Genet, 2008, 40(5): 676-681.
doi: 10.1038/ng.123 pmid: 18408719 |
[116] |
Musso G, Costanzo M, Huangfu MQ, Smith AM, Paw J, Luis BJS, Boone C, Giaever G, Nislow C, Emili A, Zhang ZL. The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Res, 2008, 18(7): 1092-1099.
doi: 10.1101/gr.076174.108 pmid: 18463300 |
[117] |
VanderSluis B, Bellay J, Musso G, Costanzo M, Papp B, Vizeacoumar FJ, Baryshnikova A, Andrews B, Boone C, Myers CL. Genetic interactions reveal the evolutionary trajectories of duplicate genes. Mol Syst Biol, 2010, 6: 429.
doi: 10.1038/msb.2010.82 pmid: 21081923 |
[118] | Woods S, Coghlan A, Rivers D, Warnecke T, Jeffries SJ, Kwon T, Rogers A, Hurst LD, Ahringer J. Duplication and retention biases of essential and non-essential genes revealed by systematic knockdown analyses. PLoS Genet, 2013, 9(5): e1003330. |
[119] |
Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet, 2006, 38(8): 896-903.
pmid: 16845399 |
[120] |
Horlbeck MA, Xu A, Wang M, Bennett NK, Park CY, Bogdanoff D, Adamson B, Chow ED, Kampmann M, Peterson TR, Nakamura K, Fischbach MA, Weissman JS, Gilbert LA. Mapping the genetic landscape of human cells. Cell, 2018, 174(4): 953-967.e22.
doi: S0092-8674(18)30735-9 pmid: 30033366 |
[121] |
Dede M, McLaughlin M, Kim E, Hart T. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens. Genome Biol, 2020, 21(1): 262.
doi: 10.1186/s13059-020-02173-2 pmid: 33059726 |
[122] | Thompson NA, Ranzani M, van der Weyden L, Iyer V, Offord V, Droop A, Behan F, Gonçalves E, Speak A, Iorio F, Hewinson J, Harle V, Robertson H, Anderson E, Fu BY, Yang FT, Zagnoli-Vieira G, Chapman P, Del Castillo Velasco-Herrera M, Garnett MJ, Jackson SP, Adams DJ. Combinatorial CRISPR screen identifies fitness effects of gene paralogues. Nat Commun, 2021, 12(1): 1302. |
[123] |
Ito T, Young MJ, Li RT, Jain S, Wernitznig A, Krill-Burger JM, Lemke CT, Monducci D, Rodriguez DJ, Chang L, Dutta S, Pal D, Paolella BR, Rothberg MV, Root DE, Johannessen CM, Parida L, Getz G, Vazquez F, Doench JG, Zamanighomi M, Sellers WR. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat Genet, 2021, 53(12): 1664-1672.
doi: 10.1038/s41588-021-00967-z pmid: 34857952 |
[124] | Parrish PCR, Thomas JD, Gabel AM, Kamlapurkar S, Bradley RK, Berger AH. Discovery of synthetic lethal and tumor suppressor paralog pairs in the human genome. Cell Rep, 2021, 36(9): 109597. |
[125] | Barshir R, Hekselman I, Shemesh N, Sharon M, Novack L, Yeger-Lotem E. Role of duplicate genes in determining the tissue-selectivity of hereditary diseases. PLoS Genet, 2018, 14(5): e1007327. |
[126] |
Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, Gill S, Harrington WF, Pantel S, Krill-Burger JM, Meyers RM, Ali L, Goodale A, Lee Y, Jiang GZ, Hsiao J, Gerath WFJ, Howell S, Merkel E, Ghandi M, Garraway LA, Root DE, Golub TR, Boehm JS, Hahn WC. Defining a cancer dependency map. Cell, 2017, 170(3): 564-576.e16.
doi: S0092-8674(17)30651-7 pmid: 28753430 |
[127] |
De Kegel B, Quinn N, Thompson NA, Adams DJ, Ryan CJ. Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines. Cell Syst, 2021, 12(12): 1144-1159.e6.
doi: 10.1016/j.cels.2021.08.006 pmid: 34529928 |
[128] | Diss G, Ascencio D, DeLuna A, Landry CR. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J Exp Zool B Mol Dev Evol, 2014, 322(7): 488-499. |
[129] | Lin HK, Cheng JH, Wu CC, Hsieh FS, Dunlap C, Chen SH. Functional buffering via cell-specific gene expression promotes tissue homeostasis and cancer robustness. Sci Rep, 2022, 12(1): 2974. |
[130] |
Kafri R, Levy M, Pilpel Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc Natl Acad Sci USA, 2006, 103(31): 11653-11658.
doi: 10.1073/pnas.0604883103 pmid: 16861297 |
[131] |
Huang XZ, Xiao N, Zou YP, Xie Y, Tang LL, Zhang YQ, Yu Y, Li YT, Xu C. Heterotypic transcriptional condensates formed by prion-like paralogous proteins canalize flowering transition in tomato. Genome Biol, 2022, 23(1): 78.
doi: 10.1186/s13059-022-02646-6 pmid: 35287709 |
[132] | Chiu SH, Ho WL, Sun YC, Kuo JC, Huang JR. Phase separation driven by interchangeable properties in the intrinsically disordered regions of protein paralogs. Commun Biol, 2022, 5(1): 400. |
[133] | O'Leary MN, Schreiber KH, Zhang Y, Duc ACE, Rao SY, Hale JS, Academia EC, Shah SR, Morton JF, Holstein CA, Martin DB, Kaeberlein M, Ladiges WC, Fink PJ, Mackay VL, Wiest DL, Kennedy BK. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet, 2013, 9(8): e1003708. |
[134] | Dandage R, Papkov M, Greco BM, Fishman D, Friesen H, Wang K, Styles E, Kraus O, Grys B, Boone C, Andrews B, Parts L, Kuzmin E. Single-cell imaging of protein dynamics of paralogs reveals mechanisms of gene retention. bioRxiv, 2023, doi: 10.1101/2023.11.23.568466. |
[135] | DeLuna A, Springer M, Kirschner MW, Kishony R. Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol, 2010, 8(3): e1000347. |
[136] | Gu X. Dynamic behaviors of expression compensation between duplicate genes. bioRxiv, 2020, doi: 10.1101/2020.03.10.986166. |
[137] | Ma ZP, Zhu PP, Shi H, Guo LW, Zhang QH, Chen YN, Chen SM, Zhang Z, Peng JR, Chen J. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature, 2019, 568(7751): 259-263. |
[138] | Serobyan V, Kontarakis Z, El-Brolosy MA, Welker JM, Tolstenkov O, Saadeldein AM, Retzer N, Gottschalk A, Wehman AM, Stainier DY. Transcriptional adaptation in Caenorhabditis elegans. eLife, 2020, 9: e50014. |
[139] | El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL, Fukuda R, Gerri C, Giraldez AJ, Stainier DYR. Genetic compensation triggered by mutant mRNA degradation. Nature, 2019, 568(7751): 193-197. |
[140] |
Thomas JH. Thinking about genetic redundancy. Trends Genet, 1993, 9(11): 395-399.
pmid: 8310537 |
[141] |
Diss G, Gagnon-Arsenault I, Dion-Coté AM, Vignaud H, Ascencio DI, Berger CM, Landry CR. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science, 2017, 355(6325): 630-634.
doi: 10.1126/science.aai7685 pmid: 28183979 |
[142] |
Kondrashov FA, Koonin EV. A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications. Trends Genet, 2004, 20(7): 287-290.
pmid: 15219392 |
[143] | Wapinski I, Pfeffer A, Friedman N, Regev A. Natural history and evolutionary principles of gene duplication in fungi. Nature, 2007, 449(7158): 54-61. |
[144] |
Ferris SD, Whitt GS. Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol, 1979, 12(4): 267-317.
pmid: 448746 |
[145] |
Mantica F, Iñiguez LP, Marquez Y, Permanyer J, Torres-Mendez A, Cruz J, Franch-Marro X, Tulenko F, Burguera D, Bertrand S, Doyle T, Nouzova M, Currie PD, Noriega FG, Escriva H, Arnone MI, Albertin CB, Wotton KR, Almudi I, Martin D, Irimia M. Evolution of tissue-specific expression of ancestral genes across vertebrates and insects. Nat Ecol Evol, 2024, 8(6): 1140-1153.
doi: 10.1038/s41559-024-02398-5 pmid: 38622362 |
[146] | Marlétaz F, Firbas PN, Maeso I, Tena JJ, Bogdanovic O, Perry M, Wyatt CDR, de la Calle-Mustienes E, Bertrand S, Burguera D, Acemel RD, van Heeringen SJ, Naranjo S, Herrera-Ubeda C, Skvortsova K, Jimenez-Gancedo S, Aldea D, Marquez Y, Buono L, Kozmikova I, Permanyer J, Louis A, Albuixech-Crespo B, Le Petillon Y, Leon A, Subirana L, Balwierz PJ, Duckett PE, Farahani E, Aury JM, Mangenot S, Wincker P, Albalat R, Benito-Gutiérrez È, Cañestro C, Castro F, D'Aniello S, Ferrier DEK, Huang SF, Laudet V, Marais GAB, Pontarotti P, Schubert M, Seitz H, Somorjai I, Takahashi T, Mirabeau O, Xu AL, Yu JK, Carninci P, Martinez-Morales JR, Crollius HR, Kozmik Z, Weirauch MT, Garcia-Fernàndez J, Lister R, Lenhard B, Holland PWH, Escriva H, Gómez-Skarmeta JL, Irimia M. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564(7734): 64-70. |
[147] | Jiang XY, Assis R. Natural selection drives rapid functional evolution of young Drosophila duplicate genes. Mol Biol Evol, 2017, 34(12): 3089-3098. |
[148] | Chen SD, Zhang YE, Long MY. New genes in Drosophila quickly become essential. Science, 2010, 330(6011): 1682-1685. |
[149] | Kondo S, Vedanayagam J, Mohammed J, Eizadshenass S, Kan LJ, Pang N, Aradhya R, Siepel A, Steinhauer J, Lai EC. New genes often acquire male-specific functions but rarely become essential in Drosophila. Genes Dev, 2017, 31(18): 1841-1846. |
[150] | Murat F, Mbengue N, Winge SB, Trefzer T, Leushkin E, Sepp M, Cardoso-Moreira M, Schmidt J, Schneider C, Mößinger K, Brüning T, Lamanna F, Belles MR, Conrad C, Kondova I, Bontrop R, Behr R, Khaitovich P, Pääbo S, Marques-Bonet T, Grützner F, Almstrup K, Schierup MH, Kaessmann H. The molecular evolution of spermatogenesis across mammals. Nature, 2023, 613(7943): 308-316. |
[151] |
Shao Y, Chen CY, Shen H, He BZ, Yu DQ, Jiang S, Zhao SL, Gao ZQ, Zhu ZL, Chen X, Fu Y, Chen H, Gao G, Long MY, Zhang YE. GenTree, an integrated resource for analyzing the evolution and function of primate- specific coding genes. Genome Res, 2019, 29(4): 682-696.
doi: 10.1101/gr.238733.118 pmid: 30862647 |
[152] | Ma HJ, Wang MX, Zhang YE, Tan SJ. The power of “controllers”: transposon-mediated duplicated genes evolve towards neofunctionalization. J Genet Genomics, 2023, 50(7): 462-472. |
[153] |
Carelli FN, Hayakawa T, Go Y, Imai H, Warnefors M, Kaessmann H. The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res, 2016, 26(3): 301-314.
doi: 10.1101/gr.198473.115 pmid: 26728716 |
[154] |
Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell, 2012, 149(4): 923-935.
doi: 10.1016/j.cell.2012.03.034 pmid: 22559944 |
[155] |
Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong FK, Peters J, Guhr E, Klemroth S, Prüfer K, Kelso J, Naumann R, Nüsslein I, Dahl A, Lachmann R, Pääbo S, Huttner WB. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science, 2015, 347(6229): 1465-1470.
doi: 10.1126/science.aaa1975 pmid: 25721503 |
[156] |
Suzuki IK, Gacquer D, Van Heurck R, Kumar D, Wojno M, Bilheu A, Herpoel A, Lambert N, Cheron J, Polleux F, Detours V, Vanderhaeghen P. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell, 2018, 173(6): 1370-1384.e16.
doi: S0092-8674(18)30399-4 pmid: 29856955 |
[157] | Xu AF, Molinuevo R, Fazzari E, Tom H, Zhang ZJ, Menendez J, Casey KM, Ruggero D, Hinck L, Pritchard JK, Barna M. Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates. eLife, 2023, 12: e78695. |
[158] | Marques AC, Vinckenbosch N, Brawand D, Kaessmann H. Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol, 2008, 9(3): R54. |
[159] |
Burki F, Kaessmann H. Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet, 2004, 36(10): 1061-1063.
pmid: 15378063 |
[160] |
Plaitakis A, Spanaki C, Mastorodemos V, Zaganas I. Study of structure-function relationships in human glutamate dehydrogenases reveals novel molecular mechanisms for the regulation of the nerve tissue- specific (GLUD2) isoenzyme. Neurochem Int, 2003, 43(4-5): 401-410.
pmid: 12742085 |
[161] | Rosso L, Marques AC, Reichert AS, Kaessmann H. Mitochondrial targeting adaptation of the hominoid- specific glutamate dehydrogenase driven by positive Darwinian selection. PLoS Genet, 2008, 4(8): e1000150. |
[162] | Nei M, Roychoudhury AK. Probability of fixation of nonfunctional genes at duplicate loci. Am Nat, 1973, 107(955): 362-372. |
[163] |
Zhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA, 1998, 95(7): 3708-3713.
doi: 10.1073/pnas.95.7.3708 pmid: 9520431 |
[164] |
Walsh JB. How often do duplicated genes evolve new functions? Genetics, 1995, 139(1): 421-428.
doi: 10.1093/genetics/139.1.421 pmid: 7705642 |
[165] |
Conant GC, Wolfe KH. Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet, 2008, 9(12): 938-950.
doi: 10.1038/nrg2482 pmid: 19015656 |
[166] |
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 1999, 151(4): 1531-1545.
doi: 10.1093/genetics/151.4.1531 pmid: 10101175 |
[167] |
Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics, 2000, 154(1): 459-473.
doi: 10.1093/genetics/154.1.459 pmid: 10629003 |
[168] |
Hughes AL. Gene duplication and the origin of novel proteins. Proc Natl Acad Sci USA, 2005, 102(25): 8791-8792.
doi: 10.1073/pnas.0503922102 pmid: 15956198 |
[169] | Des Marais DL, Rausher MD. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature, 2008, 454(7205): 762-765. |
[170] | Kuzmin E, VanderSluis B, Ba ANN, Wang W, Koch EN, Usaj M, Khmelinskii A, Usaj MM, van Leeuwen J, Kraus O, Tresenrider A, Pryszlak M, Hu MC, Varriano B, Costanzo M, Knop M, Moses A, Myers CL, Andrews BJ, Boone C. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science, 2020, 368(6498): eaaz5667. |
[171] |
Rucknagel DL. The genetics of sickle cell anemia and related syndromes. Arch Intern Med, 1974, 133(4): 595-606.
pmid: 4594396 |
[172] |
Qian WF, Liao BY, Chang AYF, Zhang JZ. Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet, 2010, 26(10): 425-430.
doi: 10.1016/j.tig.2010.07.002 pmid: 20708291 |
[173] | Gout JF, Lynch M. Maintenance and loss of duplicated genes by dosage subfunctionalization. Mol Biol Evol, 2015, 32(8): 2141-2148. |
[174] |
Lan X, Pritchard JK. Coregulation of tandem duplicate genes slows evolution of subfunctionalization in mammals. Science, 2016, 352(6288): 1009-1013.
doi: 10.1126/science.aad8411 pmid: 27199432 |
[175] |
Vinckenbosch N, Dupanloup I, Kaessmann H. Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA, 2006, 103(9): 3220-3225.
doi: 10.1073/pnas.0511307103 pmid: 16492757 |
[176] | Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV. Selection in the evolution of gene duplications. Genome Biol, 2002, 3(2): RESEARCH0008. |
[177] |
Kondrashov FA, Kondrashov AS. Role of selection in fixation of gene duplications. J Theor Biol, 2006, 239(2): 141-151.
pmid: 16242725 |
[178] |
Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA, 2005, 102(40): 14338-14343.
doi: 10.1073/pnas.0504070102 pmid: 16176987 |
[179] | Nowak MA, Boerlijst MC, Cooke J, Smith JM. Evolution of genetic redundancy. Nature, 1997, 388(6638): 167-171. |
[180] |
Wagner A. The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics, 2000, 154(3): 1389-1401.
doi: 10.1093/genetics/154.3.1389 pmid: 10757778 |
[181] |
Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet, 2010, 11(2): 97-108.
doi: 10.1038/nrg2689 pmid: 20051986 |
[182] | Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution. Trends Genet, 2022, 38(1): 59-72. |
[183] |
Sugino RP, Innan H. Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. Trends Genet, 2006, 22(12): 642-644.
pmid: 17045359 |
[184] |
Sandve SR, Rohlfs RV, Hvidsten TR. Subfunctionalization versus neofunctionalization after whole-genome duplication. Nat Genet, 2018, 50(7): 908-909.
doi: 10.1038/s41588-018-0162-4 pmid: 29955176 |
[185] |
Anvar NE, Lin CC, Ma XD, Wilson LL, Steger R, Sangree AK, Colic M, Wang SH, Doench JG, Hart T. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform. Nat Commun, 2024, 15(1): 3577.
doi: 10.1038/s41467-024-47795-3 pmid: 38678031 |
[186] |
Dixit A, Parnas O, Li BY, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, Adamson B, Norman TM, Lander ES, Weissman JS, Friedman N, Regev A. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell, 2016, 167(7): 1853-1866.e17.
doi: S0092-8674(16)31610-5 pmid: 27984732 |
[187] |
Ogiwara H, Sasaki M, Mitachi T, Oike T, Higuchi S, Tominaga Y, Kohno T. Targeting p300 addiction in CBP-deficient cancers causes synthetic lethality by apoptotic cell death due to abrogation of MYC expression. Cancer Discov, 2016, 6(4): 430-445.
doi: 10.1158/2159-8290.CD-15-0754 pmid: 26603525 |
[188] |
Helming KC, Wang XF, Wilson BG, Vazquez F, Haswell JR, Manchester HE, Kim Y, Kryukov GV, Ghandi M, Aguirre AJ, Jagani Z, Wang Z, Garraway LA, Hahn WC, Roberts CWM. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med, 2014, 20(3): 251-254.
doi: 10.1038/nm.3480 pmid: 24562383 |
[189] | Jubran J, Hekselman I, Novack L, Yeger-Lotem E. Dosage-sensitive molecular mechanisms are associated with the tissue-specificity of traits and diseases. Comput Struct Biotechnol J, 2020, 18: 4024-4032. |
[190] |
Hekselman I, Yeger-Lotem E. Mechanisms of tissue and cell-type specificity in heritable traits and diseases. Nat Rev Genet, 2020, 21(3): 137-150.
doi: 10.1038/s41576-019-0200-9 pmid: 31913361 |
[191] |
Russman BS. Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol, 2007, 22(8): 946-951.
doi: 10.1177/0883073807305673 pmid: 17761648 |
[192] |
Dhillon S. Risdiplam: first approval. Drugs, 2020, 80(17): 1853-1858.
doi: 10.1007/s40265-020-01410-z pmid: 33044711 |
[1] | 张傲, 岑山, 李晓宇. N6-腺苷甲基化修饰及其对LINE-1的调控机制[J]. 遗传, 2024, 46(3): 209-218. |
[2] | 毛洋, 丁寄葳, 陈淑敏, 岑山, 李晓宇. SLFN14抗LINE-1分子机制研究[J]. 遗传, 2020, 42(7): 669-679. |
[3] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[4] | 孟晓伟, 汪洁, 马晴雯. 唐氏综合征小鼠模型的遗传背景和应用[J]. 遗传, 2018, 40(3): 207-217. |
[5] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[6] | 刘茜,王瑾晖,李晓宇,岑山. 逆转录转座子LINE-1与肿瘤的发生和发展[J]. 遗传, 2016, 38(2): 93-102. |
[7] | 宋辉,南志标. 蒺藜苜蓿全基因组中WRKY转录因子的鉴定与分析[J]. 遗传, 2014, 36(2): 152-168. |
[8] | 刘云飞,万红建,杨悦俭,韦艳萍,李志邈,叶青静,王荣青,阮美颖,姚祝平,周国治. 番茄热激蛋白90的全基因组鉴定及分析[J]. 遗传, 2014, 36(10): 1043-1052. |
[9] | 彭贵子,陈玲玲,田大成. 基因重复研究进展 [J]. 遗传, 2006, 28(7): 886-892. |
[10] | 张志平,黄鹰,张丽珊,鲁晓暄,高翼之,王世渡. 一个BMD家系中DXS 164缺失突变的分析[J]. 遗传, 1991, 13(2): 12-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: