遗传 ›› 2020, Vol. 42 ›› Issue (7): 669-679.doi: 10.16288/j.yczz.20-081
收稿日期:
2020-04-26
修回日期:
2020-05-22
出版日期:
2020-07-20
发布日期:
2020-05-25
通讯作者:
岑山,李晓宇
E-mail:shancen@imb.pumc.edu.cn;xiaoyulik@hotmail.com
作者简介:
毛洋,在读硕士研究生,专业方向:宿主因子对转座子调控机制研究。E-mail: 基金资助:
Yang Mao, Jiwei Ding, Minshu Chen, Shan Cen(), Xiaoyu Li()
Received:
2020-04-26
Revised:
2020-05-22
Online:
2020-07-20
Published:
2020-05-25
Contact:
Cen Shan,Li Xiaoyu
E-mail:shancen@imb.pumc.edu.cn;xiaoyulik@hotmail.com
Supported by:
摘要:
长散在核重复序列1 (long interspersed nuclear element-1, LINE-1)是迄今为止发现的人体基因组中唯一具有自主转座活性的逆转录转座子,其转座常引起宿主基因组不稳定,从而导致包括癌症在内的各种严重基因疾病的发生。宿主因子在宿主抗LINE-1转座中发挥着重要作用。宿主因子SLFN14作为免疫系统重要组成员,具有抗病毒活性。本实验室研究发现SLFN14对于LINE-1的转座具有抑制作用。为进一步探究其具体的作用机制,通过对LINE-1复制周期中的转录、翻译、逆转录、整合环节进行实验分析,证实SLFN14能够通过影响LINE-1 mRNA转录过程及其半衰期,降低LINE-1 mRNA的水平,从而影响LINE-1蛋白及cDNA表达水平,最终导致LINE-1复制受阻。同时,通过对SLFN14活性中心的定位,本研究还发现SLFN14的抗LINE-1活性与其核糖核酸内切酶结构域和核糖体结合结构域密切相关。上述研究结果展示了SLFN14调控LINE-1复制的机制,进一步完善了宿主因子调控网络,为控制因LINE-1复制引起的基因组不稳定提供了新思路。
毛洋, 丁寄葳, 陈淑敏, 岑山, 李晓宇. SLFN14抗LINE-1分子机制研究[J]. 遗传, 2020, 42(7): 669-679.
Yang Mao, Jiwei Ding, Minshu Chen, Shan Cen, Xiaoyu Li. SLFN14 inhibits LINE-1 transposition activity[J]. Hereditas(Beijing), 2020, 42(7): 669-679.
图3
SLFN14并非通过影响ORF2p逆转录酶活性而影响LINE-1 cDNA水平 A:扩增LINE-1 cDNA的引物示意图。此正向引物被设计成只与拼接的耐新霉素基因结合,这样只有从拼接的RNA中逆转录的LINE-1 cDNA才能被扩增。B:Real-time PCR检测梯度转染野生型SLFN14后LINE-1 cDNA的变化情况。C:Real-time PCR检测转染野生型SLFN14及截短体SLFN14 dN3后LINE-1 cDNA的变化情况。D:LEAP实验检测ORF2p逆转录活性对LINE-1 cDNA水平的影响。将转染LINE-1及pcDNA4.0质粒组作为阴性对照组;*:P < 0.05;**:P <0.01;***:P < 0.001;ns:无显著性差异。"
[1] | Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W,Funke R,Gage D,Harris K,Heaford A,Howland J,Kann L,Lehoczky J,LeVine R,McEwan P,McKernan K,Meldrim J,Mesirov JP,Miranda C,Morris W,Naylor J,Raymond C,Rosetti M,Santos R,Sheridan A,Sougnez C,Stange-Thomann Y,Stojanovic N,Subramanian A,Wyman D,Rogers J,Sulston J,Ainscough R,Beck S,Bentley D,Burton J,Clee C,Carter N,Coulson A,Deadman R,Deloukas P,Dunham A,Dunham I,Durbin R,French L,Grafham D,Gregory S,Hubbard T,Humphray S,Hunt A,Jones M,Lloyd C,McMurray A,Matthews L,Mercer S,Milne S,Mullikin JC,Mungall A,Plumb R,Ross M,Shownkeen R,Sims S,Waterston RH,Wilson RK,Hillier LW,McPherson JD,Marra MA,Mardis ER,Fulton LA,Chinwalla AT,Pepin KH,Gish WR,Chissoe SL,Wendl MC,Delehaunty KD,Miner TL,Delehaunty A,Kramer JB,Cook LL,Fulton RS,Johnson DL,Minx PJ,Clifton SW,Hawkins T,Branscomb E,Predki P,Richardson P,Wenning S,Slezak T,Doggett N,Cheng JF,Olsen A,Lucas S,Elkin C,Uberbacher E,Frazier M,Gibbs RA,Muzny DM,Scherer SE,Bouck JB,Sodergren EJ,Worley KC,Rives CM,Gorrell JH,Metzker ML,Naylor SL,Kucherlapati RS,Nelson DL,Weinstock GM,Sakaki Y,Fujiyama A,Hattori M,Yada T,Toyoda A,Itoh T,Kawagoe C,Watanabe H,Totoki Y,Taylor T,Weissenbach J,Heilig R,Saurin W,Artiguenave F,Brottier P,Bruls T,Pelletier E,Robert C,Wincker P,Smith DR,Doucette-Stamm L,Rubenfield M,Weinstock K,Lee HM,Dubois J,Rosenthal A,Platzer M,Nyakatura G,Taudien S,Rump A,Yang H,Yu J,Wang J,Huang G,Gu J,Hood L,Rowen L,Madan A,Qin S,Davis RW,Federspiel NA,Abola AP,Proctor MJ,Myers RM,Schmutz J,Dickson M,Grimwood J,Cox DR,Olson MV,Kaul R,Raymond C,Shimizu N,Kawasaki K,Minoshima S,Evans GA,Athanasiou M,Schultz R,Roe BA,Chen F,Pan H,Ramser J,Lehrach H,Reinhardt R,McCombie WR,de la Bastide M,Dedhia N,Blocker H,Hornischer K,Nordsiek G,Agarwala R,Aravind L,Bailey JA,Bateman A,Batzoglou S,Birney E,Bork P,Brown DG,Burge CB,Cerutti L,Chen HC,Church D,Clamp M,Copley RR,Doerks T,Eddy SR,Eichler EE,Furey TS,Galagan J,Gilbert JG,Harmon C,Hayashizaki Y,Haussler D,Hermjakob H,Hokamp K,Jang W,Johnson LS,Jones TA,Kasif S,Kaspryzk A,Kennedy S,Kent WJ,Kitts P,Koonin EV,Korf I,Kulp D,Lancet D,Lowe TM,McLysaght A,Mikkelsen T,Moran JV,Mulder N,Pollara VJ,Ponting CP,Schuler G,Schultz J,Slater G,Smit AF,Stupka E,Szustakowki J,Thierry-Mieg D,Thierry-Mieg J,Wagner L,Wallis J,Wheeler R,Williams A,Wolf YI,Wolfe KH,Yang SP,Yeh RF,Collins F,Guyer MS,Peterson J,Felsenfeld A,Wetterstrand KA,Patrinos A,Morgan MJ,de Jong P,Catanese JJ,Osoegawa K,Shizuya H,Choi S,Chen YJ,Szustakowki J, International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001,409(6822):860-921. |
[2] | Rodić N, Burns KH . Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS Genet, 2013,9(3):e1003402. |
[3] | Leibold DM, Swergold GD, Singer MF, Thayer RE, Dombroski BA, Fanning TG . Translation of LINE-1 DNA elements in vitro and in human cells. Proc Natl Acad Sci USA, 1990,87(18):6990-6994. |
[4] | Martin SL . Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol, 2010,7(6):706-711. |
[5] | Piskareva O, Ernst C, Higgins N, Schmatchenko V . The carboxy-terminal segment of the human LINE-1 ORF2 protein is involved in RNA binding. FEBS Open Bio, 2013,3:433-437. |
[6] | Christian CM, deHaro D, Kines KJ, Sokolowski M, Belancio VP . Identification of L1 ORF2p sequence important to retrotransposition using Bipartile Alu retrotransposition (BAR). Nucleic Acids Res, 2016,44(10):4818-4834. |
[7] | Ye ZJ, Liu QP, Cen S, Li XY . The function of LINE-1-encoded reverse transcriptase in tumorigenesis. Hereditas(Beijing), 2017,39(5):368-376. |
叶仲杰, 刘启鹏, 岑山, 李晓宇 . LINE-1编码的逆转录酶在肿瘤形成过程中的作用. 遗传, 2017,39(5):368-376. | |
[8] | Duan XC, Jin X, Xie Y, Jiao N, Liu J, Wang XY, Lv ZJ . Different effects on reporter gene expression by distinct L1-ORF2 segements. Hereditas(Beijing), 2009,31(1):50-56. |
段肖翠, 靳霞, 谢英, 焦宁, 刘静, 王晓燕, 吕占军 . L1-ORF2不同片段对报告基因表达产生不同影响. 遗传, 2009,31(1):50-56. | |
[9] | Goodier JL, Kazazian HH Jr . Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell, 2008,135(1):23-35. |
[10] | Babushok DV, Kazazian HH Jr . Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat, 2007,28(6):527-539. |
[11] | Ostertag EM, Kazazian HH Jr . Biology of mammalian L1 retrotransposons. Annu Rev Genet, 2001,35:501-538. |
[12] | Crowther PJ, Doherty JP, Linsenmeyer ME, Williamson MR, Woodcock DM . Revised genomic consensus for the hypermethylated CpG island region of the human L1 transposon and integration sites of full length L1 elements from recombinant clones made using methylation-tolerant host strains. Nucleic Acids Res, 1991,19(9):2395-2401. |
[13] | Thayer RE, Singer MF, Fanning TG . Undermethylation of specific LINE-1 sequences in human cells producing a LINE-1-encoded protein. Gene, 1993,133(2):273-277. |
[14] | Woodcock DM, Lawler CB, Linsenmeyer ME, Doherty JP, Warren WD . Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem, 1997,272(12):7810-7816. |
[15] | Hata K, Sakaki Y . Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene, 1997,189(2):227-234. |
[16] | Jachowicz JW, Bing X, Pontabry J, Bošković A, Rando OJ, Torres-Padilla ME . LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet, 2017,49(10):1502-1510. |
[17] | Rodic N . LINE-1 activity and regulation in cancer. Front Biosci (Landmark Ed), 2018,23:1680-1686. |
[18] | Liu Q, Wang JH, Li XY, Cen S . The connection between LINE-1 retrotransposition and human tumorigenesis. Hereditas(Beijing), 2016,38(2):93-102. |
刘茜, 王瑾晖, 李晓宇, 岑山 . 逆转录转座子LINE-1与肿瘤的发生和发展. 遗传, 2016,38(2):93-102. | |
[19] | Bodak M, Yu J, Ciaudo C . Regulation of LINE-1 in mammals. Biomol Concepts, 2014,5(5):409-428. |
[20] | Wang XY, Zhang Y, Yang N, Cheng H, Sun YJ . DNMT3a mediates paclitaxel-induced abnormal expression of LINE-1 by increasing the intragenic methylation. Hereditas (Beijing), 2020,42(1):100-111. |
王昕源, 张雨, 杨楠, 程禾, 孙玉洁 . DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达. 遗传, 2020,42(1):100-111. | |
[21] | Goodier JL . Restricting retrotransposons: a review. Mob DNA, 2016,7:16. |
[22] | Schwarz DA, Katayama CD, Hedrick SM . Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity, 1998,9(5):657-668. |
[23] | Liu FR, Zhou PT, Wang Q, Zhang MC, Li D . The Schlafen family: complex roles in different cell types and virus replication. Cell Biol Int, 2018,42(1):2-8. |
[24] | Li MQ, Kao E, Gao X, Sandig H, Limmer K, Pavon- Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M . Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature, 2012,491(7422):125-128. |
[25] | Seong RK, Seo SW, Kim JA, Fletcher SJ, Morgan NV, Kumar M, Choi YK, Shin OS . Schlafen 14 (SLFN14) is a novel antiviral factor involved in the control of viral replication. Immunobiology, 2017,222(11):979-988. |
[26] | Esnault C, Maestre J, Heidmann T . Human LINE retrotransposons generate processed pseudogenes. Nat Genet, 2000,24(4):363-367. |
[27] | Kopera HC, Flasch DA, Nakamura M, Miyoshi T, Doucet AJ, Moran JV . LEAP: L1 element amplification protocol. Methods Mol Biol, 2016,1400:339-355. |
[28] | Pisareva VP, Muslimov IA, Tcherepanov A, Pisarev AV . Characterization of novel ribosome-associated endoribonuclease SLFN14 from rabbit reticulocytes. Biochemistry, 2015,54(21):3286-3301. |
[29] | Stapley RJ, Pisareva VP, Pisarev AV, Morgan NV . SLFN14 gene mutations associated with bleeding. Platelets, 2020,31(3):407-410. |
[30] | Marconi C, Di Buduo CA, Barozzi S, Palombo F, Pardini S, Zaninetti C, Pippucci T, Noris P, Balduini A, Seri M, Pecci A . SLFN14-related thrombocytopenia: identification within a large series of patients with inherited thrombocytopenia. Thromb Haemost, 2016,115(5):1076-1079. |
[31] | Fletcher SJ, Johnson B, Lowe GC, Bem D, Drake S, Lordkipanidzé M, Guiú IS, Dawood B, Rivera J, Simpson MA, Daly ME, Motwani J, Collins PW, Watson SP, Morgan NV . SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Invest, 2015,125(9):3600-3605. |
[32] | Fletcher SJ, Pisareva VP, Khan AO, Tcherepanov A, Morgan NV, Pisarev AV . Role of the novel endoribonuclease SLFN14 and its disease-causing mutations in ribosomal degradation. RNA, 2018,24(7):939-949. |
[1] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[2] | 何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
[3] | 吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
[4] | 陈敏, 张峥, 孟紫媛, 张学军. ATAC-seq在复杂疾病研究中的应用进展[J]. 遗传, 2020, 42(4): 347-353. |
[5] | 从春生, 李玉斌. Mutator超家族转座子研究进展[J]. 遗传, 2020, 42(2): 131-144. |
[6] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
[7] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[8] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[9] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[10] | 沈丹,陈才,王赛赛,陈伟,高波,宋成义. Tc1/Mariner转座子超家族的研究进展[J]. 遗传, 2017, 39(1): 1-13. |
[11] | 刘茜,王瑾晖,李晓宇,岑山. 逆转录转座子LINE-1与肿瘤的发生和发展[J]. 遗传, 2016, 38(2): 93-102. |
[12] | 王进龙, 王建, 田春艳. KRAB型锌指蛋白的进化及在物种演化中的功能[J]. 遗传, 2016, 38(11): 971-978. |
[13] | 刘振, 徐建红. 高通量测序技术在转座子研究中的应用[J]. 遗传, 2015, 37(9): 885-898. |
[14] | 李书粉,李莎,邓传良,卢龙斗,高武军. 转座子在植物XY性染色体起源与演化过程中的作用[J]. 遗传, 2015, 37(2): 157-164. |
[15] | 赵丁丁, 乔中英, 程孝, 王建平, 焦翠翠, 孙丙耀. 水稻基因组上一个Ds切离及其双位点插入行为的分子鉴定[J]. 遗传, 2014, 36(12): 1249-1255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: