[1] | Verardo LL, Silva FF, Lopes MS, Madsen O, Bastiaansen JW, Knol EF, Kelly M, Varona L, Lopes PS, Guimar?es SE . Revealing new candidate genes for reproductive traits in pigs: combining bayesian GWAS and functional pathways. Genet Sel Evol, 2016,48:9. | [2] | Felleki M, Lundeheim N . Genetic heteroscedasticity of teat count in pigs. J Anim Breed Genet, 2015,132(5):392-398. | [3] | Robinson GW . Cooperation of signalling pathways in embryonic mammary gland development. Nat Rev Genet, 2007,8(12):963-972. | [4] | Roarty K, Serra R . Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development, 2007,134(21):3929-3939. | [5] | Eblaghie MC, Song SJ, Kim JY, Akita K, Tickle C, Jung HS . Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. J Anat, 2004,205(1):1-13. | [6] | Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W, Rice R, Spencer-Dene B, Mailleux AA, Rice DP . Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development, 2006,133(12):2325-2335. | [7] | Mailleux AA, Savona-Baron B, Ndiaye D, Savona-Baron C, Itoh N, Kato S, Dickson C, Thiery JP, Bellusci S . Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development, 2002,129(1):53-60. | [8] | Howard B, Panchal H, McCarthy A, Ashworth A . Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev, 2005,19(17):2078-2090. | [9] | Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K, Honjo T, Hennighausen L . The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol, 2006,293(2):565-580. | [10] | Heckman BM, Chakravarty G, Vargo-Gogola T, Gonzales- Rimbau M, Hadsell DL, Lee AV, Settleman J, Rosen JM . Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Dev Biol, 2007,309(1):137-149. | [11] | Yang ZC, Zhou ZX, Li Z, Dong YZ . Anatomical and histological characteristics of in-verted papilla of pig. Acta Vet Et Zootech Sin, 1999,30(6):519-524. | [11] | 杨志春, 周忠孝, 李照, 董玉珍 . 猪翻乳头的解剖组织学特征的研究与探讨. 畜牧兽医学报, 1999,30(6):519-524. | [12] | Nikitin SV, Kniazev SP, Ermolaev VI . Model of genetic control of the number and location of nipples in domestic pig. Genetika, 2012,48(11):1128-1140. | [13] | Fernández A, Toro M, Rodríguez C, Silió L . Heterosis and epistasis for teat number and fluctuating asymmetry in crosses between Jiaxing and Iberian pigs. Heredity |
[1] |
Wenrui Shi, Hongzhu Qu, Xiangdong Fang.
Overview of multi-omics research in gout
[J]. Hereditas(Beijing), 2023, 45(8): 643-657.
|
[2] |
Yanan Li, Xianjun Zhang, Ning Zhang, Yalin Liang, Yuxing Zhang, Huaxing Zhao, Zicong Li, Sixiu Huang.
Effects of overexpression of histone H3K9me3 demethylase on development of porcine cloned embryos
[J]. Hereditas(Beijing), 2023, 45(1): 67-77.
|
[3] |
Fei Gao, Yu Wang, Jiaxiang Du, Xuguang Du, Jianguo Zhao, Dengke Pan, Sen Wu, Yaofeng Zhao.
Advances and applications of genetically modified pig models in biomedical and agricultural field
[J]. Hereditas(Beijing), 2023, 45(1): 6-28.
|
[4] |
Mengxuan Xu, Ming Zhou.
Advances of RNA polymerase IV in controlling DNA methylation and development in plants
[J]. Hereditas(Beijing), 2022, 44(7): 567-580.
|
[5] |
Yan Zhao, Chenxin Wang, Tianming Yang, Chunshuang Li, Lihong Zhang, Dongni Du, Ruoxi Wang, Jing Wang, Min Wei, Xueqing Ba.
Linking oxidative DNA lesion 8-OxoG to tumor development and progression
[J]. Hereditas(Beijing), 2022, 44(6): 466-477.
|
[6] |
Hui Qu, Yi Liu, Yawen Chen, Hui Wang.
Alteration of imprinted genes and offspring organ development caused by environmental factors
[J]. Hereditas(Beijing), 2022, 44(2): 107-116.
|
[7] |
Yangjinghui Zhang, Peiyao Chang, Zishu Yang, Yuhang Xue, Xueqi Li, Yang Zhang.
Advances in epigenetic modification affecting anthocyanin synthesis
[J]. Hereditas(Beijing), 2022, 44(12): 1117-1127.
|
[8] |
Qingwen Zhao, Dongning Pan.
Progress on the epigenetic regulation of adipose tissue thermogenesis
[J]. Hereditas(Beijing), 2022, 44(10): 867-880.
|
[9] |
Jiayu Yu, Ting Chen, Zhihua Wang, Juan Zheng, Tianshu Zeng.
Diagnosis, treatment and genetic analysis of a case of skin hyperpigmentation as the only manifestation with X-linked adrenoleukodystrophy
[J]. Hereditas(Beijing), 2022, 44(10): 983-989.
|
[10] |
Jiangping He, Jiekai Chen.
Epigenetic control of transposable elements and cell fate decision
[J]. Hereditas(Beijing), 2021, 43(9): 822-834.
|
[11] |
Wang Ya'nan, Tao Xu, Wanpeng Wang, Qingzhu Zhang, Xie Li'nan.
Role of epigenetic modifications in the development of crops essential traits
[J]. Hereditas(Beijing), 2021, 43(9): 858-879.
|
[12] |
Jie Yuan, Shiqing Cai.
The regulatory mechanisms of behavioral and cognitive aging
[J]. Hereditas(Beijing), 2021, 43(6): 545-570.
|
[13] |
Tianyi Wang, Yingxiang Wang, Chenjiang You.
Structural and functional characteristics of plant PHD domain-containing proteins
[J]. Hereditas(Beijing), 2021, 43(4): 323-339.
|
[14] |
Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He.
Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs
[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
|
[15] |
Qiang Wei, Yan Ao, Manman Yang, Tao Chen, Hu Han, Xingju Zhang, Ran Wang, Qiuju Xia, Fangfang Jiang, Yong Li.
Identification of genomic insertion of dominant-negative GHR mutation transgenes in Wuzhishan pig using whole genome sequencing method
[J]. Hereditas(Beijing), 2021, 43(12): 1149-1158.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|