[an error occurred while processing this directive]

Hereditas(Beijing) ›› 2017, Vol. 39 ›› Issue (7): 630-641.doi: 10.16288/j.yczz.17-069

Previous Articles     Next Articles

The roles and mechanisms of the Hippo/YAP signaling pathway in the nervous system

Xiaomei Bao1(),Qing He2,Ying Wang1,Zhihui Huang1(),Zengqiang Yuan3(),   

  1. 1. Department of Basic Medicine, Wenzhou Medical University, Wenzhou 325035, China
    2. University of Chinese Academy of Sciences, Beijing 100039, China
    3. Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
  • Received:2017-03-01 Revised:2017-04-04 Online:2017-07-20 Published:2017-06-08
  • Supported by:
    the National Natural Science Foundation of China(31671071,81630026)

Abstract:

The Hippo signaling pathway, consisting of a highly conserved kinase cascade and downstream transcription co-activators YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif), plays a key role in tissue homeostasis and organ size control by regulating the proliferation, differentiation and apoptosis of cells. During normal development, the precise control of neural cell numbers and spatial distributions of these neural cells is important for brain development. Recent studies have shown that the Hippo/YAP signaling pathway is actively involved in the self-renewal of neural stem cells, proliferation of neural progenitor cells, differentiation and activation of glial cells, and myelination of glial cells as well as in the development of neurological diseases. Due to its prominent role in the nervous system, it is necessary to further study on this pathway. In this review, we summarize the recent studies and focus on the roles and mechanisms of the Hippo/YAP signaling pathway in the nervous system, and provide insights for neural development and neural injury diseases.

Key words: Hippo signaling pathway, YAP, nervous system, neural stem cells, neural progenitor cells, glial cells