Hereditas(Beijing) ›› 2024, Vol. 46 ›› Issue (10): 833-848.doi: 10.16288/j.yczz.24-179
• Review • Previous Articles Next Articles
Xinkun Wan1,2(), Shicheng Yu2, Songqing Mei2,3, Wen Zhong2,3(
)
Received:
2024-06-18
Revised:
2024-08-21
Online:
2024-08-30
Published:
2024-08-30
Contact:
Wen Zhong
E-mail:xinkunw@hust.edu.cn;zhong_wen@gzlab.ac.cn
Supported by:
Xinkun Wan, Shicheng Yu, Songqing Mei, Wen Zhong. Application of Mendelian randomization analysis in investigating the genetic background of blood biomarkers for colorectal cancer[J]. Hereditas(Beijing), 2024, 46(10): 833-848.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
MR analysis of the causal relationship between inflammatory and immune markers and CRC"
暴露 | 相关研究 | 人群 | 结局样本量 | 结果 | OR(95% CI) | P-value |
---|---|---|---|---|---|---|
VEGF | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.352(1.019~1.315) | 0.024 |
Meng等l[ | 欧洲 | 218,792 | 正相关 | 1.17(1.02~1.35) | 0.026 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.173(1.019~1.351) | 0.026 | |
IL-12p70 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.273(1.133~1.430) | 0.0000468 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.27(1.13~1.43) | 0.00122 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.273(1.133~1.430) | 0.0000468 | |
IL-13 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.149(1.012~1.299) | 0.028 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.15(1.02~1.30) | 0.028 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.149(1.015~1.299) | 0.028 | |
Dong等[ | 欧洲 | 218,792 | 负相关 | 0.78(0.65~0.95) | 0.013 | |
IL-10 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.230(1.013~1.493) | 0.037 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.23(1.01~1.49) | 0.037 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.230(1.013~1.4913) | 0.037 | |
Ma等[ | 欧洲 | NA | 正相关 | 1.49(1.20~1.87) | 0.000431 | |
Dong等[ | 欧洲 | 218,792 | 正相关 | 1.40(1.18~1.65) | 0.000094 | |
IL-7 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.191(1.023~1.386) | 0.024 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.19(1.02~1.39) | 0.024 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.191(1.023~1.386) | 0.024 | |
M-CSF | Kong等[ | 欧洲 | 218,792 | 正相关 | 0.854(0.764~0.955) | 0.005 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 0.85(0.76~0.96) | 0.005 | |
IL-12B | Meng等[ | 欧洲 | 218,792 | 正相关 | 1.19(1.00~1.42) | 0.046 |
CRP | Nimptsch等[ | 欧洲 | NA | 正相关 | 1.74(1.06~2.85) | NA |
Hua等[ | 欧洲 | 16,918 | 不相关 | NA | NA | |
Wang等[ | 欧洲 | 53,324 | 不相关 | 1.04(0.97~1.12) | 0.256 | |
Choi 等[ | 韩国 | 59,605 | 不相关 | NA | NA | |
IL-8 | Jiang等[ | 欧洲 | 177,028 | 负相关 | 0.65(0.43~0.98) | 0.041 |
IL-2 | Dong等[ | 欧洲 | 218,792 | 负相关 | 0.76(0.63~0.92) | 0.0043 |
IL-17F | Dong等[ | 欧洲 | 218,792 | 负相关 | 0.78(0.62~1.00) | 0.015 |
IL-31 | Dong等[ | 欧洲 | 218,792 | 负相关 | 0.88(0.79~0.98) | 0.023 |
IL-36α | Dong等[ | 欧洲 | 218,792 | 正相关 | 1.23(1.01~1.49) | 0.040 |
IL-17RD | Dong等[ | 欧洲 | 218,792 | 正相关 | 1.22(1.00~1.48) | 0.048 |
Resistin | Pham等[ | 欧洲 | 309,154 | 不相关 | 1.01(0.96~1.06) | 0.067 |
GDF-15 | Yeung等[ | 欧洲 | 387314 | 不相关 | 0.91(0.80~1.04) | NA |
Table 2
MR analysis of the causal relationship between metabolic and endocrine markers and CRC"
暴露 | 相关研究 | 人群 | 结局样本量 | 结果 | OR(95% CI) | P-value |
---|---|---|---|---|---|---|
Fasting insulin | Murphy等[ | 欧洲 | 112,373 | 正相关 | 1.65(1.15~2.36) | 0.035 |
Fasting glucose | Murphy等[ | 欧洲 | 112,373 | 不相关 | 1.04(0.88~1.23) | 0.81 |
HbA1c | Murphy等[ | 欧洲 | 112,373 | 正相关 | 1.09(1.00~1.19) | 0.08 |
TC | Iwagami等[ | 日本 | 45,978 | 正相关 | 1.15(1.01~1.32) | 0.042 |
HDL-C, | Iwagami等[ | 日本 | 45,978 | 不相关 | 1.11(0.98~1.27) | 0.111 |
Triglycerides | Iwagami等[ | 日本 | 45,978 | 不相关 | 1.06(0.90~1.26) | 0.484 |
LDL-C | Iwagami等[ | 日本 | 45,978 | 不相关 | 1.17(0.91~1.50) | 0.232 |
Apolipoprotein B | Liu等[ | 欧洲 | 218,792 | 正相关 | 1.188(1.001~1.411) | 0.0491 |
IGF1 | Murphy等[ | 欧洲 | 99,152 | 正相关 | 1.08(1.03~1.12) | 0.00033 |
Larsson等[ | 欧洲 | - | 正相关 | 1.11(1.01~1.22) | 0.03 | |
Larsson等[ | 日本 | - | 正相关 | 1.22(1.09~1.36) | 0.00039 | |
IGFBP3 | Murphy等[ | 欧洲 | 99,152 | 正相关 | 1.12(1.06~1.18) | 0.000042 |
SHBG | Dimou等[ | 欧洲 | 85,638 | 不相关 | NA | NA |
DHEAS | Jayarathna等[ | 欧洲 | 387,318 | 负相关 | 0.70(0.51~0.96) | 0.03 |
Adiponectin | Nimptsch等[ | 欧洲 | 2880 | 不相关 | 0.99(0.93~1.06) | NA |
Table 3
MR analysis of the causal relationship between protein and lipid metabolism markers and CRC"
暴露 | 相关研究 | 人群 | 结局样本量 | 结果 | OR(95% CI) | P-value |
---|---|---|---|---|---|---|
Serum Albumin | Lv等[ | 日本 | 202,807 | 负相关 | 0.75(0.59~0.95) | NA |
GREM1 | Sun等[ | 欧洲 | 43199 | 正相关 | 1.14(1.10~1.18) | 1.55E-14 |
CLSTN3 | Sun等[ | 欧洲 | 43199 | 负相关 | 0.21(0.13~0.34) | 2.41E-10 |
CSF2RA | Sun等[ | 欧洲 | 43199 | 负相关 | 0.16(0.09~0.28) | 3.28E-10 |
CD86 | Sun等[ | 欧洲 | 43199 | 负相关 | 0.23(0.14~0.39) | 3.30E-8 |
VIMP | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00101(1.00008~1.00195) | 0.03327 |
TNFRSF11B | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00055(1.00007~1.00103) | 0.02346 |
C5orf38 | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00083(1.00014~1.00152) | 0.01877 |
SLC5A8 | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00252(1.00076~1.00428) | 0.00502 |
MICB | Cai等[ | 欧洲 | 377,673 | 负相关 | 0.99882(0.99785~0.99979) | 0.01764 |
Oleic | May-Wilson等[ | 欧洲 | 27640 | 负相关 | 0.77(0.65~0.922) | 0.0039 |
Palmitoleic | May-Wilson等[ | 欧洲 | 27640 | 负相关 | 0.36(0.15~0.84) | 0.018 |
Linoleic | May-Wilson等[ | 欧洲 | 27640 | 负相关 | 0.95(0.93~0.98) | 0.00037 |
Arachidonic acid | May-Wilson等[ | 欧洲 | 27640 | 正相关 | 1.05(1.02~1.07) | 0.00017 |
Stearic acid | May-Wilson等[ | 欧洲 | 27640 | 正相关 | 1.17(1.01~1.35) | 0.041 |
[1] | Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263. |
[2] | Brody H. Colorectal cancer. Nature, 2015, 521(7551): S1. |
[3] |
Heiss JA, Brenner H. Epigenome-wide discovery and evaluation of leukocyte DNA methylation markers for the detection of colorectal cancer in a screening setting. Clin Epigenetics, 2017, 9: 24.
doi: 10.1186/s13148-017-0322-x pmid: 28270869 |
[4] | Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 2000, 343(2): 78-85. |
[5] | Burt R. Inheritance of Colorectal Cancer. Drug Discov Today Dis Mech, 2007, 4(4): 293-300. |
[6] | Xin JY, Du ML, Gu DY, Jiang KW, Wang MY, Jin MJ, Hu YT, Ben S, Chen SL, Shao W, Li SW, Chu HY, Zhu LJ, Li C, Chen K, Ding KF, Zhang ZD, Shen HB, Wang ML. Risk assessment for colorectal cancer via polygenic risk score and lifestyle exposure: a large-scale association study of East Asian and European populations. Genome Med, 2023, 15(1): 4. |
[7] |
Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, Qu CX, Melas M, Van Den Berg DJ, Wang HS, Tring S, Plummer SJ, Albanes D, Alonso MH, Amos CI, Anton K, Aragaki AK, Arndt V, Barry EL, Berndt SI, Bezieau S, Bien S, Bloomer A, Boehm J, Boutron-Ruault MC, Brenner H, Brezina S, Buchanan DD, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Castelao JE, Chan AT, Chang-Claude J, Chanock SJ, Cheng I, Cheng YW, Chin LS, Church JM, Church T, Coetzee GA, Cotterchio M, Correa MC, Curtis KR, Duggan D, Easton DF, English D, Feskens EJM, Fischer R, FitzGerald LM, Fortini BK, Fritsche LG, Fuchs CS, Gago-Dominguez M, Gala M, Gallinger SJ, Gauderman WJ, Giles GG, Giovannucci EL, Gogarten SM, Gonzalez-Villalpando C, Gonzalez-Villalpando EM, Grady WM, Greenson JK, Gsur A, Gunter M, Haiman CA, Hampe J, Harlid S, Harju JF, Hayes RB, Hofer P, Hoffmeister M, Hopper JL, Huang SC, Huerta JM, Hudson TJ, Hunter DJ, Idos GE, Iwasaki M, Jackson RD, Jacobs EJ, Jee SH, Jenkins MA, Jia WH, Jiao S, Joshi AD, Kolonel LN, Kono S, Kooperberg C, Krogh V, Kuehn T, Küry S, LaCroix A, Laurie CA, Lejbkowicz F, Lemire M, Lenz HJ, Levine D, Li CI, Li L, Lieb W, Lin Y, Lindor NM, Liu YR, Loupakis F, Lu YC, Luh F, Ma J, Mancao C, Manion FJ, Markowitz SD, Martin V, Matsuda K, Matsuo K, McDonnell KJ, McNeil CE, Milne R, Molina AJ, Mukherjee B, Murphy N, Newcomb PA, Offit K, Omichessan H, Palli D, Cotoré JPP, Pérez-Mayoral J, Pharoah PD, Potter JD, Qu CH, Raskin L, Rennert G, Rennert HS, Riggs BM, Schafmayer C, Schoen RE, Sellers TA, Seminara D, Severi G, Shi W, Shibata D, Shu XO, Siegel EM, Slattery ML, Southey M, Stadler ZK, Stern MC, Stintzing S, Taverna D, Thibodeau SN, Thomas DC, Trichopoulou A, Tsugane S, Ulrich CM, van Guelpan B, Vijai J, Virtamo J, Weinstein SJ, White E, Win AK, Wolk A, Woods M, Wu AH, Wu KN, Xiang YB, Yen Y, Zanke BW, Zeng YX, Zhang B, Zubair N, Kweon SS, Figueiredo JC, Zheng W, Marchand LL, Lindblom A, Moreno V, Peters U, Casey G, Hsu L, Conti DV, Gruber SB. Novel common genetic susceptibility loci for colorectal cancer. J Natl Cancer Inst, 2019, 111(2): 146-157.
doi: 10.1093/jnci/djy099 pmid: 29917119 |
[8] |
Lu YC, Kweon SS, Tanikawa C, Jia WH, Xiang YB, Cai QY, Zeng CJ, Schmit SL, Shin A, Matsuo K, Jee SH, Kim DH, Kim J, Wen WQ, Shi JJ, Guo XY, Li BS, Wang N, Zhang B, Li XX, Shin MH, Li HL, Ren ZF, Oh JH, Oze I, Ahn YO, Jung KJ, Conti DV, Schumacher FR, Rennert G, Jenkins MA, Campbell PT, Hoffmeister M, Casey G, Gruber SB, Gao J, Gao YT, Pan ZZ, Kamatani Y, Zeng YX, Shu XO, Long JR, Matsuda K, Zheng W. Large-scale genome-wide association study of east Asians identifies loci associated with risk for colorectal cancer. Gastroenterology, 2019, 156(5): 1455-1466.
doi: S0016-5085(18)35385-X pmid: 30529582 |
[9] | Toiyama Y, Okugawa Y, Fleshman J, Boland CR, Goel A. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta Rev Cancer, 2018, 1870(2): 274-282. |
[10] |
Cornish AJ, Tomlinson IPM, Houlston RS. Mendelian randomisation: A powerful and inexpensive method for identifying and excluding non-genetic risk factors for colorectal cancer. Mol Aspects Med, 2019, 69: 41-47.
doi: S0098-2997(18)30118-3 pmid: 30710596 |
[11] |
Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Smith GD. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr, 2016, 103(4): 965-978.
pmid: 26961927 |
[12] |
Burgess S, Swanson SA, Labrecque JA. Are Mendelian randomization investigations immune from bias due to reverse causation? Eur J Epidemiol, 2021, 36(3): 253-257.
doi: 10.1007/s10654-021-00726-8 pmid: 33611685 |
[13] | Weith M, Beyer A. The next step in Mendelian randomization. eLife, 2023, 12: e86416. |
[14] | Nimptsch K, Aleksandrova K, Boeing H, Janke J, Lee YA, Jenab M, Bueno-de-Mesquita HB, Jansen EHJM, Tsilidis KK, Trichopoulou A, Weiderpass E, Wu CS, Overvad K, Tjønneland A, Boutron-Ruault MC, Dossus L, Racine A, Kaaks R, Canzian F, Lagiou P, Trichopoulos D, Palli D, Agnoli C, Tumino R, Vineis P, Panico S, Johansson A, Van Guelpen B, Khaw KT, Wareham N, Peeters PH, Quirós JR, García AV, Molina-Montes E, Dorronsoro M, Chirlaque MD, Gurrea AB, Key TJ, Duarte-Salles T, Stepien M, Gunter MJ, Riboli E, Pischon T. Association of CRP genetic variants with blood concentrations of C-reactive protein and colorectal cancer risk. Int J Cancer, 2015, 136(5): 1181-1192. |
[15] |
Murphy N, Song MY, Papadimitriou N, Carreras-Torres R, Langenberg C, Martin RM, Tsilidis KK, Barroso I, Chen J, Frayling TM, Bull CJ, Vincent EE, Cotterchio M, Gruber SB, Pai RK, Newcomb PA, Perez-Cornago A, Van Guelpen B, Vodicka P, Wolk A, Wu AH, Peters U, Chan AT, Gunter MJ. Associations between glycemic traits and colorectal cancer: A Mendelian randomization analysis. J Natl Cancer Inst, 2022, 114(5): 740-752.
doi: 10.1093/jnci/djac011 pmid: 35048991 |
[16] | Iwagami M, Goto A, Katagiri R, Sutoh Y, Koyanagi YN, Nakatochi M, Nakano S, Hanyuda A, Narita A, Shimizu A, Tanno K, Hozawa A, Kinoshita K, Oze I, Ito H, Yamaji T, Sawada N, Nakamura Y, Nakamura S, Kuriki K, Suzuki S, Hishida A, Kasugai Y, Imoto I, Suzuki M, Momozawa Y, Takeuchi K, Yamamoto M, Sasaki M, Matsuo K, Tsugane S, Wakai K, Iwasaki M. Blood lipids and the risk of colorectal cancer: Mendelian randomization analyses in the Japanese consortium of genetic epidemiology studies. Cancer Prev Res (Phila), 2022, 15(12): 827-836. |
[17] |
Murphy N, Carreras-Torres R, Song MY, Chan AT, Martin RM, Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Bradbury KE, Besevic J, Rinaldi S, Riboli E, Cross AJ, Travis RC, Agnoli C, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buchanan DD, Onland-Moret NC, Burnett-Hartman A, Campbell PT, Casey G, Castellví-Bel S, Chang-Claude J, Chirlaque MD, de la Chapelle A, English D, Figueiredo JC, Gallinger SJ, Giles GG, Gruber SB, Gsur A, Hampe J, Hampel H, Harrison TA, Hoffmeister M, Hsu L, Huang WY, Huyghe JR, Jenkins MA, Keku TO, Kühn T, Kweon SS, Le Marchand L, Li CI, Li L, Lindblom A, Martín V, Milne RL, Moreno V, Newcomb PA, Offit K, Ogino S, Ose J, Perduca V, Phipps AI, Platz EA, Potter JD, Qu CH, Rennert G, Sakoda LC, Schafmayer C, Schoen RE, Slattery ML, Tangen CM, Ulrich CM, Van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Wang HS, White E, Wolk A, Woods MO, Wu AH, Zheng W, Peters U, Gunter MJ. Circulating levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 associate with risk of colorectal cancer based on serologic and Mendelian randomization analyses. Gastroenterology, 2020, 158(5): 1300-1312.e20.
doi: S0016-5085(19)41951-3 pmid: 31884074 |
[18] | Smith GD, Ebrahim S. Data dredging, bias, or confounding. BMJ, 2002, 325(7378): 1437-1438. |
[19] |
Thanassoulis G, O'Donnell CJ. Mendelian randomization: nature’s randomized trial in the post-genome era. JAMA, 2009, 301(22): 2386-2388.
doi: 10.1001/jama.2009.812 pmid: 19509388 |
[20] | Smith GD, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet, 2014, 23(R1): R89-R98. |
[21] |
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Smith GD. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008, 27(8): 1133-1163.
doi: 10.1002/sim.3034 pmid: 17886233 |
[22] |
Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith GD. Recent developments in Mendelian randomization studies. Curr Epidemiol Rep, 2017, 4(4): 330-345.
doi: 10.1007/s40471-017-0128-6 pmid: 29226067 |
[23] | Burgess S, Smith GD, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C, Morrison JV, Pan W, Relton CL, Theodoratou E. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res, 2023, 4: 186. |
[24] |
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698.
doi: 10.1038/s41588-018-0099-7 pmid: 29686387 |
[25] | Hemani G, Bowden J, Smith GD. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet, 2018, 27(R2): R195-R208. |
[26] | Gala H, Tomlinson I. The use of Mendelian randomisation to identify causal cancer risk factors: promise and limitations. J Pathol, 2020, 250(5): 541-554. |
[27] | Gagnon E, Daghlas I, Zagkos L, Sargurupremraj M, Georgakis MK, Anderson CD, Cronje HT, Burgess S, Arsenault BJ, Gill D. Mendelian randomization applied to neurology: promises and challenges. Neurology, 2024, 102(4): e209128. |
[28] |
Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525.
doi: 10.1093/ije/dyv080 pmid: 26050253 |
[29] |
Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology, 2017, 28(1): 30-42.
pmid: 27749700 |
[30] |
Bowden J, Smith GD, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314.
doi: 10.1002/gepi.21965 pmid: 27061298 |
[31] |
Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, Wallace C, Burgess S. Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches. Am J Hum Genet, 2022, 109(5): 767-782.
doi: 10.1016/j.ajhg.2022.04.001 pmid: 35452592 |
[32] | Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet, 2014, 10(5): e1004383. |
[33] | Angrist JD, Imbens GW. Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J Am Stat Assoc, 1995, 90(430): 431-442. |
[34] |
Burgess S, Scott RA, Timpson NJ, Smith GD, Thompson SG, EPIC-InterAct Consortium. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol, 2015, 30(7): 543-552.
doi: 10.1007/s10654-015-0011-z pmid: 25773750 |
[35] |
Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol, 2016, 40(7): 597-608.
doi: 10.1002/gepi.21998 pmid: 27625185 |
[36] | Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care:2020 report of the Lancet Commission. Lancet, 2020, 396(10248): 413-446. |
[37] | Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Morón FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fiévet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, George-Hyslop PS, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossù P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, European Alzheimer's Disease Initiative EADI, Genetic and Environmental Risk in Alzheimer's Disease, Alzheimer's Disease Genetic Consortium, Cohorts for Heart and Aging Research in Genomic Epidemiology, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O'Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nöthen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet, 2013, 45(12): 1452-1458. |
[38] | Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, Palmer T, Schooling CM, Wallace C, Zhao QY, Smith GD. Mendelian randomization. Nat Rev Methods Primers, 2022, 2: 6. |
[39] |
Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol, 2015, 181(4): 251-260.
doi: 10.1093/aje/kwu283 pmid: 25632051 |
[40] |
Carter AR, Sanderson E, Hammerton G, Richmond RC, Smith GD, Heron J, Taylor AE, Davies NM, Howe LD. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol, 2021, 36(5): 465-478.
doi: 10.1007/s10654-021-00757-1 pmid: 33961203 |
[41] |
Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol, 2017, 41(4): 341-352.
doi: 10.1002/gepi.22041 pmid: 28317167 |
[42] |
Burgess S, Davies NM, Thompson SG, EPIC-InterAct Consortium. Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology, 2014, 25(6): 877-885.
doi: 10.1097/EDE.0000000000000161 pmid: 25166881 |
[43] |
Song XY, Gao HC, Lin YY, Yao YK, Zhu S, Wang JJ, Liu Y, Yao XM, Meng GX, Shen N, Shi YF, Iwakura Y, Qian YC. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity, 2014, 40(1): 140-152.
doi: 10.1016/j.immuni.2013.11.018 pmid: 24412611 |
[44] |
Wu P, Wu D, Ni C, Ye J, Chen WZ, Hu GM, Wang Z, Wang CR, Zhang ZG, Xia WJ, Chen ZG, Wang K, Zhang T, Xu JH, Han YH, Zhang T, Wu XG, Wang JW, Gong WH, Zheng S, Qiu FM, Yan J, Huang J. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity, 2014, 40(5): 785-800.
doi: 10.1016/j.immuni.2014.03.013 pmid: 24816404 |
[45] |
Kryczek I, Lin YW, Nagarsheth N, Peng DJ, Zhao LL, Zhao ED, Vatan L, Szeliga W, Dou YL, Owens S, Zgodzinski W, Majewski M, Wallner G, Fang JY, Huang E, Zou WP. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity, 2014, 40(5): 772-784.
doi: 10.1016/j.immuni.2014.03.010 pmid: 24816405 |
[46] | Kong YQ, Wang XY, Xu HY, Liu SX, Qie R. A Mendelian randomization study on the causal association of circulating cytokines with colorectal cancer. PLoS One, 2023, 18(12): e0296017. |
[47] | Meng C, Sun LT, Shi JY, Li Y, Gao JL, Liu YS, Wei PY, Yang ZY, Yao HW, Zhang ZT. Exploring causal correlations between circulating levels of cytokines and colorectal cancer risk: A Mendelian randomization analysis. Int J Cancer, 2024, 155(1): 159-171. |
[48] | Yang ZS, Zhang ML, Zhang YF, Tang YT, Li YB, Zhang Y, Jian M, Jiang LX. Mendelian randomization investigation of the causal association between circulating cytokines and colorectal cancer. (2023-07-10) [2024-06-08]. https://www.researchsquare.com/article/rs-3116170/v1 . |
[49] | Ma MW, Zheng ZC, Li J, He YX, Kang WM, Ye X. Association between the gut microbiota, inflammatory factors, and colorectal cancer: evidence from Mendelian randomization analysis. Front Microbiol, 2024, 15: 1309111. |
[50] | Zhou B, Shu B, Yang J, Liu J, Xi T, Xing YY. C-reactive protein, interleukin-6 and the risk of colorectal cancer: a meta-analysis. Cancer Causes Control, 2014, 25(10): 1397-1405. |
[51] | Hua XW, Dai JY, Lindström S, Harrison TA, Lin Y, Alberts SR, Alwers E, Berndt SI, Brenner H, Buchanan DD, Campbell PT, Casey G, Chang-Claude J, Gallinger S, Giles GG, Goldberg RM, Gunter MJ, Hoffmeister M, Jenkins MA, Joshi AD, Ma WJ, Milne RL, Murphy N, Pai RK, Sakoda LC, Schoen RE, Shi Q, Slattery ML, Song MY, White E, Le Marchand L, Chan AT, Peters U, Newcomb PA. Genetically predicted circulating C-reactive protein concentration and colorectal cancer survival: A Mendelian randomization consortium study. Cancer Epidemiol Biomarkers Prev, 2021, 30(7): 1349-1358. |
[52] |
Wang XL, Dai JY, Albanes D, Arndt V, Berndt SI, Bézieau S, Brenner H, Buchanan DD, Butterbach K, Caan B, Casey G, Campbell PT, Chan AT, Chen ZY, Chang-Claude J, Cotterchio M, Easton DF, Giles GG, Giovannucci E, Grady WM, Hoffmeister M, Hopper JL, Hsu L, Jenkins MA, Joshi AD, Lampe JW, Larsson SC, Lejbkowicz F, Li L, Lindblom A, Le Marchand L, Martin V, Milne RL, Moreno V, Newcomb PA, Offitt K, Ogino S, Pharoah PDP, Pinchev M, Potter JD, Rennert HS, Rennert G, Saliba W, Schafmayer C, Schoen RE, Schrotz-King P, Slattery ML, Song MY, Stegmaier C, Weinstein SJ, Wolk A, Woods MO, Wu AH, Gruber SB, Peters U, White E. Mendelian randomization analysis of C-reactive protein on colorectal cancer risk. Int J Epidemiol, 2019, 48(3): 767-780.
doi: 10.1093/ije/dyy244 pmid: 30476131 |
[53] | Choi CK, Yang JH, Shin MH, Cho SH, Kweon SS. No association between genetically predicted C-reactive protein levels and colorectal cancer survival in Korean: two-sample Mendelian randomization analysis. Epidemiol Health, 2023, 45: e2023039. |
[54] | Acevedo-León D, Gómez-Abril SÁ, Sanz-García P, Estañ-Capell N, Bañuls C, Sáez G. The role of oxidative stress, tumor and inflammatory markers in colorectal cancer patients: A one-year follow-up study. Redox Biol, 2023, 62: 102662. |
[55] |
Pastille E, Wasmer MH, Adamczyk A, Vu VP, Mager LF, Phuong NNT, Palmieri V, Simillion C, Hansen W, Kasper S, Schuler M, Muggli B, McCoy KD, Buer J, Zlobec I, Westendorf AM, Krebs P. The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer. Mucosal Immunol, 2019, 12(4): 990-1003.
doi: 10.1038/s41385-019-0176-y pmid: 31165767 |
[56] | Chen FE, Qu M, Zhang F, Tan ZY, Xia QH, Hambly BD, Bao SS, Tao K. IL-36 s in the colorectal cancer: is interleukin 36 good or bad for the development of colorectal cancer? BMC cancer, 2020, 20(1): 92. |
[57] | Jiang HF, Liu YM, Zhou R, Feng Y, Yan L. Circulating interleukins and risk of colorectal cancer: a Mendelian randomization study. Scand J Gastroenterol, 2023, 58(12): 1466-1473. |
[58] | Dong JX, Jiang WJ, Zhang WJ, Hu RH, Huang ZY, Guo TH, Du T, Jiang XH. Genetic association of circulating interleukins and risk of colorectal cancer: A bidirectional Mendelian randomization study. Environ Toxicol, 2024, 39(5): 2706-2716. |
[59] | Tuomisto AE, Mäkinen MJ, Väyrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol, 2019, 25(31): 4383-4404. |
[60] | Yang G, Fan W, Luo BH, Xu ZG, Wang P, Tang SH, Xu PP, Yu MX. Circulating resistin levels and risk of colorectal cancer: A meta-analysis. Biomed Res Int, 2016, 2016: 7367485. |
[61] | Pham TT, Nimptsch K, Aleksandrova K, Jenab M, Reichmann R, Wu KN, Tjønneland A, Kyrø C, Schulze MB, Kaaks R, Katzke V, Palli D, Pasanisi F, Ricceri F, Tumino R, Krogh V, Roodhart J, Castilla J, Sánchez MJ, Colorado-Yohar SM, Harbs J, Rutegård M, Papier K, Aglago EK, Dimou N, Mayen-Chacon AL, Weiderpass E, Pischon T. Pre-diagnostic circulating resistin concentrations are not associated with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study. Cancers (Basel), 2022, 14(22): 5499. |
[62] |
Pham TT, Nimptsch K, Papadimitriou N, Aleksandrova K, Jenab M, Gunter MJ, Marchand LL, Li L, Lynch BM, Castellví-Bel S, Phipps AI, Schmit SL, Brenner H, Ogino S, Giovannucci E, Pischon T. Genetically determined circulating resistin concentrations and risk of colorectal cancer: a two-sample Mendelian randomization study. J Cancer Res Clin Oncol, 2023, 149(16): 14889-14900.
doi: 10.1007/s00432-023-05193-0 pmid: 37599317 |
[63] |
Yeung SLA, Luo S, Schooling CM. The impact of GDF-15, a biomarker for metformin, on the risk of coronary artery disease, breast and colorectal cancer, and type 2 diabetes and metabolic traits: a Mendelian randomisation study. Diabetologia, 2019, 62(9): 1638-1646.
doi: 10.1007/s00125-019-4913-2 pmid: 31161347 |
[64] | Rinaldi S, Rohrmann S, Jenab M, Biessy C, Sieri S, Palli D, Tumino R, Mattiello A, Vineis P, Nieters A, Linseisen J, Pischon T, Boeing H, Hallmans G, Palmqvist R, Manjer J, Wirfält E, Crowe FL, Khaw KTT, Bingham S, Tjønneland A, Olsen A, Overvad K, Lund E, Skeie G, Clavel- Chapelon F, Boutron-Ruault MC, de Lauzon-Guillain B, Ardanaz E, Jakszyn P, Quiros JR, Chirlaque MD, Sanchez MJ, Dorronsoro M, Trichopoulou A, Lagiou P, Trichopoulos D, Bueno-de-Mesquita HB, Peeters PHM, Slimani N, Ferrari P, Byrnes GB, Riboli E, Kaaks R. Glycosylated hemoglobin and risk of colorectal cancer in men and women, the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev, 2008, 17(11): 3108-3115. |
[65] |
Dashti SG, Viallon V, Simpson JA, Karahalios A, Moreno-Betancur M, English DR, Gunter MJ, Murphy N. Explaining the link between adiposity and colorectal cancer risk in men and postmenopausal women in the UK Biobank: A sequential causal mediation analysis. Int J Cancer, 2020, 147(7): 1881-1894.
doi: 10.1002/ijc.32980 pmid: 32181888 |
[66] | Peila R, Rohan TE. Diabetes, glycated hemoglobin, and risk of cancer in the UK Biobank study. Cancer Epidemiol Biomarkers Prev, 2020, 29(6): 1107-1119. |
[67] | Xu JM, Ye Y, Wu H, Duerksen-Hughes P, Zhang HH, Li PW, Huang J, Yang J, Wu YH, Xia DJ. Association between markers of glucose metabolism and risk of colorectal cancer. BMJ Open, 2016, 6(6): e011430. |
[68] | Lin J, Ridker PM, Pradhan A, Lee IM, Manson JE, Cook NR, Buring JE, Zhang SM. Hemoglobin A1c concentrations and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev, 2005, 14(12): 3010-3012. |
[69] | Pang YJ, Kartsonaki C, Guo Y, Chen YP, Yang L, Bian Z, Bragg F, Millwood IY, Shen LJ, Zhou SG, Liu JB, Chen JS, Li LM, Holmes MV, Chen ZM. Diabetes, plasma glucose and incidence of colorectal cancer in Chinese adults: a prospective study of 0.5 million people. J Epidemiol Community Health, 2018, 72(10): 919-925. |
[70] | Myte R, Gylling B, Häggström J, Häggström C, Zingmark C, Burström AL, Palmqvist R, Van Guelpen B. Metabolic factors and the risk of colorectal cancer by KRAS and BRAF mutation status. Int J Cancer, 2019, 145(2): 327-337. |
[71] |
Iso H, Ikeda A, Inoue M, Sato S, Tsugane S, JPHC Study Group. Serum cholesterol levels in relation to the incidence of cancer: the JPHC study cohorts. Int J Cancer, 2009, 125(11): 2679-2686.
doi: 10.1002/ijc.24668 pmid: 19544528 |
[72] | Yao X, Tian Z. Dyslipidemia and colorectal cancer risk: a meta-analysis of prospective studies. Cancer Causes Control, 2015, 26(2): 257-268. |
[73] | Liu XW, Yu H, Yan GY, Xu BY, Sun MJ, Feng ML. Causal relationships between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers: univariable and multivariable Mendelian randomization. Eur J Nutr, 2024, 63(2): 469-483. |
[74] |
Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, Stampfer MJ. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst, 1999, 91(7): 620-625.
doi: 10.1093/jnci/91.7.620 pmid: 10203281 |
[75] |
Kaaks R, Toniolo P, Akhmedkhanov A, Lukanova A, Biessy C, Dechaud H, Rinaldi S, Zeleniuch-Jacquotte A, Shore RE, Riboli E. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst, 2000, 92(19): 1592-1600.
doi: 10.1093/jnci/92.19.1592 pmid: 11018095 |
[76] |
Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, Howard BV, Wylie-Rosett J, Anderson GL, Ho GYF, Kaplan RC, Li JX, Xue XN, Harris TG, Burk RD, Strickler HD. Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. Cancer Res, 2008, 68(1): 329-337.
doi: 10.1158/0008-5472.CAN-07-2946 pmid: 18172327 |
[77] |
Otani T, Iwasaki M, Sasazuki S, Inoue M, Tsugane S, Japan Public Health Center-based Prospective Study Group. Plasma C-peptide, insulin-like growth factor-I, insulin-like growth factor binding proteins and risk of colorectal cancer in a nested case-control study: the Japan public health center-based prospective study. Int J Cancer, 2007, 120(9): 2007-2012.
doi: 10.1002/ijc.22556 pmid: 17266031 |
[78] |
Palmqvist R, Stattin P, Rinaldi S, Biessy C, Stenling R, Riboli E, Hallmans G, Kaaks R. Plasma insulin, IGF-binding proteins-1 and -2 and risk of colorectal cancer: a prospective study in northern Sweden. Int J Cancer, 2003, 107(1): 89-93.
doi: 10.1002/ijc.11362 pmid: 12925961 |
[79] |
Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, Boeing H, Pischon T, Panico S, Agnoli C, Palli D, Tumino R, Vineis P, Peeters PHM, van Gils CH, Bueno-de-Mesquita BH, Vrieling A, Allen NE, Roddam A, Bingham S, Khaw KT, Manjer J, Borgquist S, Dumeaux V, Gram IT, Lund E, Trichopoulou A, Makrygiannis G, Benetou V, Molina E, Suárez ID, Gurrea AB, Gonzalez CA, Tormo MJ, Altzibar JM, Olsen A, Tjonneland A, Grønbaek H, Overvad K, Clavel-Chapelon F, Boutron-Ruault MC, Morois S, Slimani N, Boffetta P, Jenab M, Riboli E, Kaaks R. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer, 2010, 126(7): 1702-1715.
doi: 10.1002/ijc.24927 pmid: 19810099 |
[80] | Probst-Hensch NM, Yuan JM, Stanczyk FZ, Gao YT, Ross RK, Yu MC. IGF-1, IGF-2 and IGFBP-3 in prediagnostic serum: association with colorectal cancer in a cohort of Chinese men in Shanghai. Br J Cancer, 2001, 85(11): 1695-1699. |
[81] | Larsson SC, Carter P, Vithayathil M, Kar S, Mason AM, Burgess S. Insulin-like growth factor-1 and site-specific cancers: A Mendelian randomization study. Cancer Med, 2020, 9(18): 6836-6842. |
[82] | Dimou N, Mori N, Harlid S, Harbs J, Martin RM, Smith-Byrne K, Papadimitriou N, Bishop DT, Casey G, Colorado-Yohar SM, Cotterchio M, Cross AJ, Le Marchand L, Lin Y, Offit K, Onland-Moret NC, Peters U, Potter JD, Rohan TE, Weiderpass E, Gunter MJ, Murphy N. Circulating levels of testosterone, sex hormone-binding globulin, and colorectal cancer risk: Observational and Mendelian randomization analyses. Cancer Epidemiol Biomarkers Prev, 2021, 30(7): 1336-1348. |
[83] | Jayarathna DK, Rentería ME, Kho PF, Batra J, Gandhi NS. Dehydroepiandrosterone sulfate and colorectal cancer risk: A Mendelian randomization analysis. Twin Res Hum Genet, 2022, 25(4-5): 180-186. |
[84] |
Aleksandrova K, Boeing H, Jenab M, Bueno-de-Mesquita HB, Jansen E, Fedirko V, Rinaldi S, Romieu I, Riboli E, Romaguera D, Westphal S, Overvad K, Tjønneland A, Boutron-Ruault MC, Clavel-Chapelon F, Kaaks R, Lukanova A, Trichopoulou A, Lagiou P, Trichopoulos D, Agnoli C, Mattiello A, Saieva C, Vineis P, Tumino R, Peeters PH, Argüelles M, Bonet C, Sánchez MJ, Dorronsoro M, Huerta JM, Barricarte A, Palmqvist R, Hallmans G, Khaw KT, Wareham N, Allen NE, Crowe FL, Pischon T. Total and high-molecular weight adiponectin and risk of colorectal cancer: the European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis, 2012, 33(6): 1211-1218.
doi: 10.1093/carcin/bgs133 pmid: 22431719 |
[85] | Song MY, Zhang XH, Wu KN, Ogino S, Fuchs CS, Giovannucci EL, Chan AT. Plasma adiponectin and soluble leptin receptor and risk of colorectal cancer: a prospective study. Cancer Prev Res (Phila), 2013, 6(9): 875-885. |
[86] |
Nimptsch K, Song MY, Aleksandrova K, Katsoulis M, Freisling H, Jenab M, Gunter MJ, Tsilidis KK, Weiderpass E, Bueno-De-Mesquita HB, Chong DQ, Jensen MJ, Wu CS, Overvad K, Kühn T, Barrdahl M, Melander O, Jirström K, Peeters PH, Sieri S, Panico S, Cross AJ, Riboli E, Van Guelpen B, Myte R, Huerta JM, Rodriguez- Barranco M, Quirós JR, Dorronsoro M, Tjønneland A, Olsen A, Travis R, Boutron-Ruault MC, Carbonnel F, Severi G, Bonet C, Palli D, Janke J, Lee YA, Boeing H, Giovannucci EL, Ogino S, Fuchs CS, Rimm E, Wu KN, Chan AT, Pischon T. Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies. Eur J Epidemiol, 2017, 32(5): 419-430.
doi: 10.1007/s10654-017-0262-y pmid: 28550647 |
[87] | Sun LC, Chu KS, Cheng SC, Lu CY, Kuo CH, Hsieh JS, Shih YL, Chang SJ, Wang JY. Preoperative serum carcinoembryonic antigen, albumin and age are supplementary to UICC staging systems in predicting survival for colorectal cancer patients undergoing surgical treatment. BMC Cancer, 2009, 9: 288. |
[88] | Dixon MR, Haukoos JS, Udani SM, Naghi JJ, Arnell TD, Kumar RR, Stamos MJ. Carcinoembryonic antigen and albumin predict survival in patients with advanced colon and rectal cancer. Arch Surg, 2003, 138(9): 962-966. |
[89] | González-Trejo S, Carrillo JF, Carmona-Herrera DD, Baz-Gutiérrez P, Herrera-Goepfert R, Núñez G, Ochoa- Carrillo FJ, Gallardo-Rincón D, Aiello-Crocifoglio V, Oñate-Ocaña LF. Baseline serum albumin and other common clinical markers are prognostic factors in colorectal carcinoma: A retrospective cohort study. Medicine (Baltimore), 2017, 96(15): e6610. |
[90] | He MM, Fang Z, Hang D, Wang F, Polychronidis G, Wang L, Lo CH, Wang K, Zhong R, Knudsen MD, Smith SG, Xu RH, Song MY. Circulating liver function markers and colorectal cancer risk: A prospective cohort study in the UK Biobank. Int J Cancer, 2021, 148(8): 1867-1878. |
[91] | Ghuman S, Van Hemelrijck M, Garmo H, Holmberg L, Malmström H, Lambe M, Hammar N, Walldius G, Jungner I, Wulaningsih W. Serum inflammatory markers and colorectal cancer risk and survival. Br J Cancer, 2017, 116(10): 1358-1365. |
[92] | Kühn T, Sookthai D, Graf ME, Schübel R, Freisling H, Johnson T, Katzke V, Kaaks R. Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study. Br J Cancer, 2017, 117(10): 1572-1579. |
[93] |
Lv LSS, Sun XH, Liu B, Song J, Wu DJH, Gao Y, Li AL, Hu XQ, Mao YY, Ye D. Genetically predicted serum albumin and risk of colorectal cancer: A bidirectional Mendelian randomization study. Clin Epidemiol, 2022, 14: 771-778.
doi: 10.2147/CLEP.S367547 pmid: 35761866 |
[94] | Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet, 2021, 22(1): 19-37. |
[95] |
Sun J, Zhao JH, Jiang FY, Wang LJ, Xiao Q, Han FY, Chen J, Yuan S, Wei JS, Larsson SC, Zhang HH, Dunlop MG, Farrington SM, Ding KF, Theodoratou E, Li X. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome. Genome Med, 2023, 15(1): 75.
doi: 10.1186/s13073-023-01229-9 pmid: 37726845 |
[96] | Cai YX, Wu YQ, Liu J, Pan HL, Deng WH, Sun WJ, Xie CY, Huang XF. Proteome-wide analysis reveals potential therapeutic targets for Colorectal cancer: a two-sample mendelian randomization study. BMC Cancer, 2023, 23(1): 1188. |
[97] |
May-Wilson S, Sud A, Law PJ, Palin K, Tuupanen S, Gylfe A, Hänninen UA, Cajuso T, Tanskanen T, Kondelin J, Kaasinen E, Sarin AP, Eriksson JG, Rissanen H, Knekt P, Pukkala E, Jousilahti P, Salomaa V, Ripatti S, Palotie A, Renkonen-Sinisalo L, Lepistö A, Böhm J, Mecklin JP, Al-Tassan NA, Palles C, Farrington SM, Timofeeva MN, Meyer BF, Wakil SM, Campbell H, Smith CG, Idziaszczyk S, Maughan TS, Fisher D, Kerr R, Kerr D, Passarelli MN, Figueiredo JC, Buchanan DD, Win AK, Hopper JL, Jenkins MA, Lindor NM, Newcomb PA, Gallinger S, Conti D, Schumacher F, Casey G, Aaltonen LA, Cheadle JP, Tomlinson IP, Dunlop MG, Houlston RS. Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. Eur J Cancer, 2017, 84: 228-238.
doi: S0959-8049(17)31154-1 pmid: 28829991 |
[1] | Panhui Tian, Yue Xu, Yongqing Zhang, Tianyun Wang. Genetic diseases are not necessarily inherited: suggestion on its Chinese translation [J]. Hereditas(Beijing), 2024, 46(9): 673-676. |
[2] | Jianqing Lin, Shaopan Ye, Shuqi Wang, Hong Du. Teaching genetics with integrative thoughts of conservation biology [J]. Hereditas(Beijing), 2024, 46(7): 581-586. |
[3] | Daiyuan Liu, Zhaohui Zhang, Xianjiang Kang. Research progress on the effect of sperm chromatin integrity on function and its detection methods [J]. Hereditas(Beijing), 2024, 46(7): 511-529. |
[4] | Yuan Shen, Jintao Li, Miao Yin, Qunying Lei. The roles of branched-chain amino acids metabolism in tumorigenesis and progression [J]. Hereditas(Beijing), 2024, 46(6): 438-451. |
[5] | Henglei Tang, Shutao Zheng, You Li, Wangtao Zhong. Research progress on genetics in cardioembolic stroke [J]. Hereditas(Beijing), 2024, 46(5): 373-386. |
[6] | Chunxiao Mao. The construction of genetics teaching resources related to colour blindness and their application in genetics teaching [J]. Hereditas(Beijing), 2024, 46(4): 346-354. |
[7] | Zhenlin Cao, Jinhong Li, Minhui Zhou, Manting Zhang, Ning Wang, Yifei Chen, Jiaxin Li, Qingsong Zhu, Wenjun Gong, Xuchen Yang, Xiaolong Fang, Jiaxian He, Meina Li. Functional study of the soybean stamen-preferentially expressed gene GmFLA22a in regulating male fertility [J]. Hereditas(Beijing), 2024, 46(4): 333-345. |
[8] | Xin Zhu, Xin Jin, Jun Liu, Lan Yang, Lixin Zou, Caixia Li, Jiang Huang, Li Jiang. Paternal genetic structure analysis of the modern Han populations based on Y-SNP and Y-STR [J]. Hereditas(Beijing), 2024, 46(2): 149-167. |
[9] | Yanni Wang, Jia Li. Processing pipelines and analytical methods for single-cell DNA methylation sequencing data [J]. Hereditas(Beijing), 2024, 46(10): 807-819. |
[10] | Mao Zhang, Yanyan Wang, Yun Bai, Xuedan Chen, Hong Guo. Investigation on the construction of teaching case base in medical genetics [J]. Hereditas(Beijing), 2024, 46(1): 78-87. |
[11] | Jie Ma, Lujie Huang, Qiaoxia Zhang, Yan Zhu, Lu Qian. PBL teaching design of medical genetics with the case of brachydactyly type A2 [J]. Hereditas(Beijing), 2023, 45(2): 176-183. |
[12] | Xiufang Ou, Ying Wu, Ning Li, Lili Jiang, Bao Liu, Lei Gong. Epigenetics comprehensive experimental course based on the integration of science and education to cultivate students' ability of cutting-edge innovation [J]. Hereditas(Beijing), 2023, 45(12): 1158-1168. |
[13] | Xin Li, Hong Fan, Xingchun Zhao, Xiaonuo Fan, Ruoxia Yao. Rapid analyzing mixed STR profiles based on the global minimum residual method [J]. Hereditas(Beijing), 2023, 45(10): 933-944. |
[14] | Fei Wang, Meng Wang, Xinghua Zhang, Keli Yu, Lianbin Zheng, Yajun Yang. Genetic substructure analysis of three isolated populations in southwest China [J]. Hereditas(Beijing), 2022, 44(5): 424-431. |
[15] | Yongqiang Kong, Jinkai Liu, Jiaqi Gu, Jingyi Xu, Yunuo Zheng, Yiliang Wei, Shaoyuan Wu. Optimization scheme of machine learning model for genetic division between northern Han, southern Han, Korean and Japanese [J]. Hereditas(Beijing), 2022, 44(11): 1028-1043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号