Hereditas(Beijing) ›› 2024, Vol. 46 ›› Issue (9): 690-700.doi: 10.16288/j.yczz.24-155
• Review • Previous Articles Next Articles
Dongxia Pan(), Hui Wang, Benhai Xiong, Xiangfang Tang(
)
Received:
2024-05-31
Revised:
2024-07-15
Online:
2024-09-20
Published:
2024-08-15
Contact:
Xiangfang Tang
E-mail:pandongxia1117@163.com;xiangfangtang@163.com
Supported by:
Dongxia Pan, Hui Wang, Benhai Xiong, Xiangfang Tang. Progress on CRISPR-Cas gene editing technology in sheep production[J]. Hereditas(Beijing), 2024, 46(9): 690-700.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Nuclease characteristics of Cas9 and Cas12"
特性 | Cas核酸酶 | ||||
---|---|---|---|---|---|
Cas9 | Cas9n | dCas9 | Cas12a (Cpf1) | Cas12b (C2c1) | |
CRISPR-Cas系统分类 | 2类II-A型 | 2类II-A型 | 2类II-A型 | 2类V-A型 | 2类V-B型 |
核酸酶结构域 | HNH和RuvC | HNH或RuvC | 无 | RuvC | RuvC |
PAM | NGG/NAG/NGA | NGG | NGG | (T)TTN | TTN |
引导RNA | tracrRNA+crRNA (~120 nt) | tracrRNA+crRNA (~120 nt) | tracrRNA+crRNA (~120 nt) | crRNA (40~44 nt) | tracrRNA+crRNA (~120 nt) |
靶向目标 | dsDNA | dsDNA | dsDNA | ds/ssDNA | ds/ssDNA |
反式切割活性 | ssDNA/ssRNA | ssDNA/ssRNA | 无 | ssDNA | ssDNA |
[1] |
Huang S, Yan YL, Su F, Huang XR, Xia DD, Jiang XX, Dong YH, Lv P, Chen FY, Lv YW. Research progress in gene editing technology. Front Biosci (Landmark Ed), 2021, 26(10): 916-927.
doi: 10.52586/4997 pmid: 34719215 |
[2] |
Vicencio J, Cerón J. A living organism in your CRISPR toolbox: caenorhabditis elegans is a rapid and efficient model for developing CRISPR-Cas technologies. CRISPR J, 2021, 4(1): 32-42.
doi: 10.1089/crispr.2020.0103 pmid: 33538637 |
[3] | Liu HJ, Jian LM, Xu JT, Zhang QH, Zhang ML, Jin ML, Peng Y, Yan JL, Han BZ, Liu J, Gao F, Liu XG, Huang L, Wei WJ, Ding YX, Yang XF, Li ZX, Zhang ML, Sun JM, Bai MJ, Song WH, Chen HM, Sun XA, Li WQ, Lu YM, Liu Y, Zhao JR, Qian YW, Jackson D, Fernie AR, Yan JB. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell, 2020, 32(5): 1397-1413. |
[4] |
Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage. Trends Genet, 2018, 34(8): 600-611.
doi: S0168-9525(18)30089-1 pmid: 29908711 |
[5] | Liu Y, Xiong YZ, Cai ZZ, Zhang B. Development and challenges of gene editing technology. Chin J Biotechnol, 2019, 35(8): 1401-1410. |
[6] |
Zhang Y, Massel K, Godwin ID, Gao CX. Correction to: applications and potential of genome editing in crop improvement. Genome Biol, 2019, 20(1): 13.
doi: 10.1186/s13059-019-1622-6 pmid: 30651124 |
[7] | Li C, Brant E, Budak H, Zhang BH. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B, 2021, 22(4): 253-284. |
[8] |
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169(12): 5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 pmid: 3316184 |
[9] |
Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol, 2010, 70: 217-248.
doi: 10.1016/S0065-2164(10)70007-1 pmid: 20359459 |
[10] |
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962): 167-170.
doi: 10.1126/science.1179555 pmid: 20056882 |
[11] |
Jansen R, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43(6): 1565-1575.
doi: 10.1046/j.1365-2958.2002.02839.x pmid: 11952905 |
[12] |
Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu SX. Dynamics of Cas10 govern discrimination between self and non-self in type III CRISPR-Cas immunity. Mol Cell, 2019, 73(2): 278-290.e4.
doi: S1097-2765(18)30978-X pmid: 30503774 |
[13] |
Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun, 2018, 9(1): 1911.
doi: 10.1038/s41467-018-04252-2 pmid: 29765029 |
[14] | Wang MY, Wang HQ, Li K, Li XM, Wang XJ, Wang ZX. Review of CRISPR/Cas systems on detection of nucleotide sequences. Foods, 2023, 12(3): 477-495. |
[15] |
Sashital DG. Pathogen detection in the CRISPR-Cas era. Genome Med, 2018, 10(1): 32.
doi: 10.1186/s13073-018-0543-4 pmid: 29690921 |
[16] | Wang M, Zhang R, Li JM. CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosens Bioelectron, 2020, 165: 112430. |
[17] |
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935-949.
doi: 10.1016/j.cell.2014.02.001 pmid: 24529477 |
[18] | Chen JY, Chen Y, Huang LL, Lin XF, Chen H, Xiang WW, Liu L. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol, 2024, doi: 10.1038/s41587-024-02255-7. |
[19] |
Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[20] |
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 23452860 |
[21] | Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439. |
[22] |
Qiu XY, Liu CY, Zhu CS, Zhu LY. MicroRNA detection with CRISPR/Cas. Methods Mol Biol, 2023, 2630: 25-45.
doi: 10.1007/978-1-0716-2982-6_3 pmid: 36689174 |
[23] |
Li Y, Li SY, Wang J, Liu GZ. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol, 2019, 37(7): 730-743.
doi: S0167-7799(18)30360-3 pmid: 30654914 |
[24] |
Hong Y, Lu GQ, Duan JZ, Liu WJ, Zhang Y. Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol, 2018, 19(1): 39.
doi: 10.1186/s13059-018-1413-5 pmid: 29566733 |
[25] | Richardson C, Kelsh RN, Richardson RJ. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis Model Mech, 2023, 16(2): dmm049874. |
[26] | Xu X, Liu MJ. Research progress on application of CRISPR/Cas9 genome editing systems in sheep. China Anim Husb Vet Med, 2022, 49(11): 4129-4138. |
徐鑫, 刘明军. CRISPR/Cas9基因编辑技术在绵羊中的应用研究进展. 中国畜牧兽医, 2022, 49(11): 4129-4138. | |
[27] | Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol, 2017, 18(8): 495-506. |
[28] | Zaboikin M, Zaboikina T, Freter C, Srinivasakumar N. Non-homologous end joining and homology directed DNA repair frequency of double-stranded breaks introduced by genome editing reagents. PLoS One, 2017, 12(1): e0169931. |
[29] |
Wang R, Zhang JY, Lu KH, Lu SS, Zhu XX. Efficient generation of GHR knockout Bama minipig fibroblast cells using CRISPR/Cas9-mediated gene editing. In Vitro Cell Dev Biol Anim, 2019, 55(10): 784-792.
doi: 10.1007/s11626-019-00397-6 pmid: 31456163 |
[30] |
Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res, 2019, 47(W1): W171-W174.
doi: 10.1093/nar/gkz365 |
[31] | Kroll F, Powell GT, Ghosh M, Gestri G, Antinucci P, Hearn TJ, Tunbak H, Lim S, Dennis HW, Fernandez JM, Whitmore D, Dreosti E, Wilson SW, Hoffman EJ, Rihel J. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife, 2021, 10: e59683. |
[32] | Bae HS, Jin YK, Ham S, Kim HK, Shin H, Cho GB, Lee KJ, Lee H, Kim KM, Koo OJ, Jang G, Lee JM, Lee JY. CRISRP/Cas9-mediated knockout of Mct8 reveals a functional involvement of Mct8 in testis and sperm development in a rat. Sci Rep, 2020, 10(1): 11148. |
[33] | Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med, 2018, 215(3): 985-997. |
[34] | Ranawakage DC, Okada K, Sugio K, Kawaguchi Y, Kuninobu-Bonkohara Y, Takada T, Kamachi Y. Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Front Cell Dev Biol, 2021, 8: 598634. |
[35] | Yan XM, Li WZ, Gong G, Yan XC, Su YX, Zhang LD, Zhang JX, Su R. Research progress in application of CRISPR/Cas9 gene editing technology in functional gene verification in sheep breeding. Heilongjiang Anim Sci Vet Med, 2024(1): 29-35+53. |
闫晓敏, 李文泽, 龚高, 严晓春, 苏奕忻, 张露丹, 张嘉欣, 苏蕊. CRISPR/Cas9基因编辑技术在羊育种功能基因验证中的应用研究进展. 黑龙江畜牧兽医, 2024(1): 29-35+53. | |
[36] |
Liang Z, Chen KL, Yan Y, Zhang Y, Gao CX. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol J, 2018, 16(12): 2053-2062.
doi: 10.1111/pbi.12938 pmid: 29723918 |
[37] | Liu NN, Zuo XC, Pi WH. A feasibility study of using Cas9 ribonucleoproteins for genotyping of FecB in sheep. Heilongjiang J Anim Reprod, 2023, 31(1): 20-25. |
刘楠楠, 左昕晨, 皮文辉. 应用Cas9 RNPs进行绵羊FecB基因型检测的可行性研究. 黑龙江动物繁殖, 2023, 31(1): 20-25. | |
[38] | Wu TJ, Sun JY, Lu LJ, Wang C, Zhou SW, Chen YL, Wang XJ, Wang XL. Rapid on-site genotyping of the ovine prolific FecBB mutation using a CRISPR/Cas12a-based detection system. J Integr Agric, 2024, doi: 10.1016/j.jia.2024.05.013. |
[39] | Yoshimatsu S, Sato T, Yamamoto M, Sasaki E, Nakajima M, Nakamura M, Shiozawa S, Noce T, Okano H. Generation of a male common marmoset embryonic stem cell line DSY127-BV8VT1 carrying double reporters specific for the germ cell linage using the CRISPR-Cas9 and PiggyBac transposase systems. Stem Cell Res, 2020, 44: 101740. |
[40] | Yang H, Deng MT, Lv WL, Wei ZY, Cai Y, Cheng PY, Wang F, Zhang YL. Overexpression of bmp4, dazl, nanos3 and sycp2 in Hu sheep leydig cells using CRISPR/dcas9 system promoted male germ cell related gene expression. Biology (Basel), 2022, 11(2): 289. |
[41] | Zhang XM, Li WR, Wu YS, Peng XR, Lou B, Wang LQ, Liu MJ. Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos. Theriogenology, 2017, 91: 163-172.e2. |
[42] |
Souza CJH, McNeilly AS, Benavides MV, Melo EO, Moraes JCF. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim Genet, 2014, 45(5): 732-739.
doi: 10.1111/age.12190 pmid: 25039891 |
[43] | Niu YY, Zhao XE, Zhou JK, Li Y, Huang Y, Cai B, Liu YT, Ding Q, Zhou SW, Zhao J, Zhou GX, Ma BH, Huang XX, Wang XL, Chen YL. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reprod Fertil Dev, 2018, 30(2): 307-312. |
[44] | Zhou SW, Yu HH, Zhao XE, Cai B, Ding Q, Huang Y, Li YX, Li Y, Niu YY, Lei AM, Kou QF, Huang XX, Petersen B, Ma BH, Chen YL, Wang XL. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reprod Fertil Dev, 2018, 30(12): 1616-1621. |
[45] | Luo Q. Generation of CRISPR-mediated TBXT and FecB gene editing in Tan sheep[Dissertation]. Northwest A&F Universit, 2022. |
罗琪. CRISPR技术介导的TBXT和FecB基因编辑滩羊的制备[学位论文]. 西北农林科技大学, 2022. | |
[46] |
Tellam RL, Cockett NE, Vuocolo T, Bidwell CA. Genes contributing to genetic variation of muscling in sheep. Front Genet, 2012, 3: 164.
doi: 10.3389/fgene.2012.00164 pmid: 22952470 |
[47] |
Boman IA, Klemetsdal G, Nafstad O, Blichfeldt T, Våge DI. Selection based on progeny testing induces rapid changes in myostatin allele frequencies - a case study in sheep. J Anim Breed Genet, 2011, 128(1): 52-55.
doi: 10.1111/j.1439-0388.2010.00879.x pmid: 21214644 |
[48] |
Zhou SW, Kalds P, Luo Q, Sun KX, Zhao XE, Gao YW, Cai B, Huang SH, Kou QF, Petersen B, Chen YL, Ma BH, Wang XL. Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics, 2022, 23(1): 348.
doi: 10.1186/s12864-022-08594-6 pmid: 35524183 |
[49] |
Wang XL, Niu YY, Zhou JK, Yu HH, Kou QF, Lei AM, Zhao XE, Yan HL, Cai B, Shen QY, Zhou SW, Zhu HJ, Zhou GX, Niu WZ, Hua JL, Jiang Y, Huang XX, Ma BH, Chen YL. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep, 2016, 6: 32271.
doi: 10.1038/srep32271 pmid: 27562433 |
[50] |
Wang KK, Ouyang HS, Xie ZC, Yao CG, Guo NN, Li MJ, Jiao HP, Pang DX. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 16623.
doi: 10.1038/srep16623 pmid: 26564781 |
[51] | Guo RH, Wang HL, Meng CH, Gui HB, Li YX, Chen F, Zhang CJ, Zhang H, Ding Q, Zhang JL, Zhang J, Qian Y, Zhong JF, Cao SX. Efficient and specific generation of MSTN-edited Hu sheep using C-CRISPR. Genes (Basel), 2023, 14(6): 1216. |
[52] | Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, Lin JP, Han B, Wang LQ, Huang JC, Liu MJ. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS J, 2017, 284(17): 2764-2773. |
[53] |
Zhang R, Wu HP, Lian ZX. Bioinformatics analysis of evolutionary characteristics and biochemical structure of FGF5 gene in sheep. Gene, 2019, 702: 123-132.
doi: S0378-1119(19)30297-5 pmid: 30926307 |
[54] | Xiang B, Li YM, Li JP, Li JY, Jiang HZ, Zhang QL. MiR-19 3b regulated the formation of coat colors by targeting WNT10A and GNAI2 in Cashmere goats. Anim Biotechnol, 2023, 34(4): 796-804. |
[55] | Zhang XM, Li WR, Liu CX, Peng XR, Lin JP, He SG, Li XJ, Han B, Zhang N, Wu YS, Chen L, Wang LQ, MaYila, Huang JC, Liu MJ. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci Rep, 2017, 7(1): 8149. |
[56] | Hao F, Yan W, Li XC, Wang H, Wang YM, Hu X, Liu X, Liang H, Liu DJ. Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-mediated genome editing. Int J Biol Sci, 2018, 14(4): 427-436. |
[57] |
Li GW, Zhou SW, Li C, Cai B, Yu HH, Ma BH, Huang Y, Ding YG, Liu Y, Ding Q, He C, Zhou JK, Wang Y, Zhou GX, Li Y, Yan Y, Hua JL, Petersen B, Jiang Y, Sonstegard T, Huang XX, Chen YL, Wang XL. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J, 2019, 286(23): 4675-4692.
doi: 10.1111/febs.14983 pmid: 31276295 |
[58] |
Clark S, Mora García MB. A 100-year review: advances in goat milk research. J Dairy Sci, 2017, 100(12): 10026-10044.
doi: S0022-0302(17)31050-0 pmid: 29153153 |
[59] | Sharma S, Kumar P, Betzel C, Singh TP. Structure and function of proteins involved in milk allergies. J Chromatogr B Biomed Sci Appl, 2001, 756(1-2): 183- 187. |
[60] | Sélo I, Négroni L, Créminon C, Yvon M, Peltre G, Wal JM. Allergy to bovine beta-lactoglobulin: specificity of human IgE using cyanogen bromide-derived peptides. Int Arch Allergy Immunol, 1998, 117(1): 20-28. |
[61] | Zhou WJ, Wan YJ, Guo RH, Deng MT, Deng KP, Wang Z, Zhang YL, Wang F. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9.PLoS One, 2017, 12(10): e0186056. |
[62] |
Wu MM, Wei CH, Lian ZX, Liu RZ, Zhu CY, Wang HH, Cao JX, Shen YL, Zhao FP, Zhang L, Mu Z, Wang YY, Wang XG, Du LX, Wang CD. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Sci Rep, 2016, 6: 24360.
doi: 10.1038/srep24360 pmid: 27063570 |
[63] |
Liu H, Liu C, Zhao YH, Han XJ, Zhou ZW, Wang C, Li RF, Li XL. Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. J Integr Agric, 2018, 17(2): 406-414.
doi: 10.1016/S2095-3119(17)61748-9 |
[64] | Li QH, Wang F, Wang Q, Zhang N, Zheng JM, Zheng MQ, Liu RR, Cui HX, Wen J, Zhao GP. SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response. PLoS Pathog, 2020, 16(5): e1008188. |
[65] |
Proudfoot C, Lillico S, Tait-Burkard C. Genome editing for disease resistance in pigs and chickens. Anim Front, 2019, 9(3): 6-12.
doi: 10.1093/af/vfz013 pmid: 32002257 |
[66] |
Yu GH, Chen JQ, Yu HQ, Liu SG, Chen J, Xu XJ, Sha HY, Zhang XF, Wu GX, Xu SF, Cheng GX. Functional disruption of the prion protein gene in cloned goats. J Gen Virol, 2006, 87(Pt 4): 1019-1027.
doi: 10.1099/vir.0.81384-0 pmid: 16528053 |
[67] |
Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME. Suppression of prion protein in livestock by RNA interference. Proc Natl Acad Sci USA, 2006, 103(14): 5285-5290.
pmid: 16567624 |
[68] |
Fan ZQ, Yang M, Regouski M, Polejaeva IA. Gene knockouts in goats using CRISPR/Cas9 system and somatic cell nuclear transfer. Methods Mol Biol, 2019, 1874: 373-390.
doi: 10.1007/978-1-4939-8831-0_22 pmid: 30353526 |
[69] | Zhao J, Xu SRGL, Li HP, Liu SY. Malignant transformation of sheep trophoblast cells induced by envelope protein of Jaagsiekte sheep retrovirus. Acta Vet Zootech Sin, 2018, 49(5): 1089-1095. |
赵娟, 徐斯日古楞, 李慧萍, 刘淑英. 绵羊肺腺瘤病毒囊膜蛋白引起绵羊绒毛膜滋养层细胞的恶性转化. 畜牧兽医学报, 2018, 49(5): 1089-1095. | |
[70] | Abstracts from the UC Davis Transgenic Animal Research Conference XI: August 13-17, 2017. Transgenic Res, 2018, 27(5): 467-487. |
[71] | Ni W, Qiao J, Hu SW, Zhao XX, Regouski M, Yang M, Polejaeva IA, Chen CF. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 2014, 9(9): e106718. |
[72] | Lin YQ, Li J, Li CJ, Tu ZC, Li SH, Li XJ, Yan S. Application of CRISPR/Cas9 system in establishing large animal models. Front Cell Dev Biol, 2022, 10: 919155. |
[73] |
Teng F, Cui TT, Feng GH, Guo L, Xu K, Gao QQ, Li TD, Li J, Zhou Q, Li W. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov, 2018, 4: 63.
doi: 10.1038/s41421-018-0069-3 pmid: 30510770 |
[74] | Li WJ, Shi L, Zhuang ZP, Wu H, Lian M, Chen YH, Li L, Ge WK, Jin Q, Zhang QJ, Zhao Y, Liu ZM, Ouyang Z, Ye YH, Li YY, Wang H, Liao Y, Quan LQ, Xiao L, Lai LX, Meng GX, Wang KP. Correction: engineered pigs carrying a gain-of-function NLRP3 homozygous mutation can survive to adulthood and accurately recapitulate human systemic spontaneous inflammatory responses. J Immunol, 2021, 207(9): 2385-2386. |
[75] |
Eaton SL, Proudfoot C, Lillico SG, Skehel P, Kline RA, Hamer K, Rzechorzek NM, Clutton E, Gregson R, King T, O'Neill CA, Cooper JD, Thompson G, Whitelaw CB, Wishart TM. CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep, 2019, 9(1): 9891.
doi: 10.1038/s41598-019-45859-9 pmid: 31289301 |
[76] |
Williams DK, Pinzón C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH, Westhusin ME, Suva LJ, Long CR, Gaddy D. Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep, 2018, 8(1): 16945.
doi: 10.1038/s41598-018-35079-y pmid: 30446691 |
[77] |
Crispo M, Chenouard V, Dos Santos-Neto P, Tesson L, Souza-Neves M, Heslan JM, Cuadro F, Anegón I, Menchaca A. Generation of a human deafness sheep model using the CRISPR/Cas system. Methods Mol Biol, 2022, 2495: 233-244.
doi: 10.1007/978-1-0716-2301-5_12 pmid: 35696036 |
[78] |
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin LL. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res, 2016, 61(3): 253-278.
doi: 10.1111/jpi.12360 pmid: 27500468 |
[79] | Ma T, Tao JL, Yang MH, He CJ, Tian XZ, Zhang XS, Zhang JL, Deng SL, Feng JZ, Zhang ZZ, Wang J, Ji PY, Song YK, He PL, Han HB, Fu JC, Lian ZX, Liu GS. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. J Pineal Res, 2017, 63(1): e12406. |
[80] |
Kalds P, Zhou SW, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang XL, Chen YL. Sheep and goat genome engineering: from random transgenesis to the CRISPR era. Front Genet, 2019, 10: 750.
doi: 10.3389/fgene.2019.00750 pmid: 31552084 |
[81] |
Yang YH, Wang DD, Lü P, Ma SS, Chen KP. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep, 2023, 50(4): 3723-3738.
doi: 10.1007/s11033-023-08240-8 pmid: 36648696 |
[82] |
Yin JH, Liu MZ, Liu Y, Wu JC, Gan TT, Zhang WW, Li YH, Zhou YX, Hu JZ. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov, 2019, 5: 18.
doi: 10.1038/s41421-019-0088-8 pmid: 30937179 |
[83] |
Raza SHA, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA, Alotaibi MA, Al-Hazani TM, Abd El-Aziz AH, Cheng G, Zan LS. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J Biol Sci, 2022, 29(4): 1928-1935.
doi: 10.1016/j.sjbs.2021.11.037 pmid: 35531207 |
[84] | Modrzejewski D, Hartung F, Lehnert H, Sprink T, Kohl C, Keilwagen J, Wilhelm R. Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: a systematic review in plants. Front Plant Sci, 2020, 11: 574959. |
[85] | Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang XL, Jin SX. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci (Weinh), 2020, 7(6): 1902312. |
[86] | Zhang YG, Arango G, Li F, Xiao X, Putatunda R, Yu J, Yang XF, Wang H, Watson LT, Zhang LQ, Hu WH. Comprehensive off-target analysis of dCas9-SAM- mediated HIV reactivation via long noncoding RNA and mRNA profiling. BMC Med Genomics, 2018, 11(1): 78. |
[87] |
Menchaca A, Dos Santos-Neto PC, Mulet AP, Crispo M. CRISPR in livestock: from editing to printing. Theriogenology, 2020, 150: 247-254.
doi: S0093-691X(20)30076-5 pmid: 32088034 |
[1] | Yiming Gong, Xiangyu Wang, Xiaoyun He, Yufang Liu, Ping Yu, Mingxing Chu, Ran Di. Progress on the effect of FecB mutation on BMPR1B activity and BMP/SMAD pathway in sheep [J]. Hereditas(Beijing), 2023, 45(4): 295-305. |
[2] | Shaozheng Song, Zhengyi He, Yong Cheng, Baoli Yu, Ting Zhang, Dan Li. MSTN modification in goat mediated by TALENs and performance analysis [J]. Hereditas(Beijing), 2022, 44(6): 531-542. |
[3] | Haitao Wang, Tingting Li, Xun Huang, Runlin Ma, Qiuyue Liu. Application of genetic modification technologies in molecular design breeding of sheep [J]. Hereditas(Beijing), 2021, 43(6): 580-600. |
[4] | Xiaohong He, Lin Jiang, Yabin Pu, Qianjun Zhao, Yuehui Ma. Progress on genetic mapping and genetic mechanism of cattle and sheep horns [J]. Hereditas(Beijing), 2021, 43(1): 40-51. |
[5] | Lianchao Tang, Feng Gu. Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM [J]. Hereditas(Beijing), 2020, 42(3): 236-249. |
[6] | Bingyuan Wang, Yulian Mu, Kui Li, Zhiguo Liu. Research progress of stem cells in agricultural animals [J]. Hereditas(Beijing), 2020, 42(11): 1073-1080. |
[7] | Zhida Zhao,Li Zhang. Applications of genome selection in sheep breeding [J]. Hereditas(Beijing), 2019, 41(4): 293-303. |
[8] | Qing Xia, Qiuyue Liu, Xiangyu Wang, Wenping Hu, Chunyan Li, Xiaoyun He, Mingxing Chu, Ran Di. The molecular mechanism of sheep seasonal breeding and artificial regulatory techniques for estrus and mating in anestrus [J]. Hereditas(Beijing), 2018, 40(5): 369-377. |
[9] | Tongyu Zhang,Caiye Zhu,Lixin Du,Fuping Zhao. Advances in genome-wide association studies for important traits in sheep and goats [J]. Hereditas(Beijing), 2017, 39(6): 491-500. |
[10] | Zhao Yongxin, Li Menghua. Research advances on the origin, evolution and genetic diversity of Chinese native sheep breeds [J]. Hereditas(Beijing), 2017, 39(11): 958-973. |
[11] | Wei Wang, Yushuang Wang, Lanlan Huang, Zijian Jian, Xinhua Wang, Shouren Liu, Wenhui Pi. Increasing the efficiency of homologous recombination vector-mediated end joining repair by inhibition of Lig4 gene using siRNA in sheep embryo fibroblasts [J]. Hereditas(Beijing), 2016, 38(9): 831-839. |
[12] | Tianzhi Chen, Bingling Zhao, Yu Liu, Yuanyuan Zhao, Haidong Wang, Ruiwen Fan, Pengchao Wang, Changsheng Dong. Expression and localization of GPR143 in sheep skin [J]. HEREDITAS(Beijing), 2016, 38(7): 658-665. |
[13] | Lei Gao,Min Shen,Shangquan Gan,Jingquan Yang,Yiyuan Zhang. Molecular cloning and tissue expression of the CCNG1 gene in sheep [J]. HEREDITAS(Beijing), 2015, 37(4): 374-381. |
[14] | Ruixia Xu,Lei Gao,Weili Zhao,Wei Zhang,Guangchao Song,Shangquan Gan,Guoqing Shi. Analysis of FABP4 expression pattern in rump fat deposition and metabolism of Altay sheep [J]. HEREDITAS(Beijing), 2015, 37(2): 174-182. |
[15] | Xiangyu Fan, Guojian Liao, Jianping Xie. Intellectual property education exemplified by the patents on the CRISPR/Cas9 system [J]. HEREDITAS(Beijing), 2014, 36(12): 1269-1273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号