[1] | Richmond TA, Somerville CR. The cellulose synthase superfamily. Plant Physiol, 2000, 124(2): 495-498. | [2] | Liepman AH, Wightman R, Geshi N, Turner SR, Scheller HV. Arabidopsis-a powerful model system for plant cell wall research. Plant J, 2010, 61(6): 1107-1121. | [3] | Cosgrove DJ, Jarvis MC. Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci, 2012, 3: 204. | [4] | Kimura S, Laosinchai W, Itoh T, Cui XJ, Linder CR, Brown RM Jr. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell, 1999, 11(11): 2075-2086. | [5] | Perrin RM. Cellulose: how many cellulose synthases to make a plant? Curr Biol, 2001, 11(6): R213-R216. | [6] | Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 2005, 6(11): 850-861. | [7] | Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides inArabidopsis Ixr1 mutants Proc Natl Acad Sci USA, 2001, 98(18): 10079-10084. | [8] | Taylor NG, Laurie S, Turner SR. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell, 2000, 12(12): 2529-2540. | [9] | Zhou XF, Wang JY, Wang XZ. Research progress of cellulose synthase genes in higher plant. Hereditas (Beijing), 2002, 24(3): 376-378. | [9] | 周晓馥, 王景余, 王兴智. 植物纤维素合成酶基因的研究进展. 遗传, 2002, 24(3): 376-378. | [10] | Delmer DP. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 245-276. | [11] | Richmond T. Higher plant cellulose synthases. Genome Biol, 2000, 1(4): reviews3001.1-3001.6. | [12] | Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA, 1996, 93(22): 12637-12642. | [13] | Wang LQ, Guo K, Li Y, Tu YY, Hu HZ, Wang BR, Cui XC, Peng LC. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10(1): 282. | [14] | Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci U S A, 2002, 99(17): 11109-11114. | [15] | Appen |
[1] |
Shunze Wang, Feng Jiang, Dongli Zhu, Tie-Lin Yang, Yan Guo.
Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis
[J]. Hereditas(Beijing), 2023, 45(4): 279-294.
|
[2] |
Siyuan Xu, Jia Shou, Qiang Wu.
Additional evidence of HS5-1 enhancer eRNA PEARL for protocadherin alpha gene regulation
[J]. Hereditas(Beijing), 2022, 44(8): 695-764.
|
[3] |
Yan Zhao, Chenxin Wang, Tianming Yang, Chunshuang Li, Lihong Zhang, Dongni Du, Ruoxi Wang, Jing Wang, Min Wei, Xueqing Ba.
Linking oxidative DNA lesion 8-OxoG to tumor development and progression
[J]. Hereditas(Beijing), 2022, 44(6): 466-477.
|
[4] |
Qianbin Zhu, Zhicheng Gan, Xiaocui Li, Yingjie Zhang, Heming Zhao, Xianzhong Huang.
Genome-wide identification, phylogenetic and expression of MAPKKK gene family in Arabidopsis pumila
[J]. Hereditas(Beijing), 2022, 44(11): 1044-1055.
|
[5] |
Cong Zhou, Qiangwei Zhou, Sheng Cheng, Guoliang Li.
Research progress of CTCF in mediating 3D genome formation and regulating gene expression
[J]. Hereditas(Beijing), 2021, 43(9): 816-821.
|
[6] |
Haidong Xu, Bolin Ning, Fang Mu, Hui Li, Ning Wang.
Advances of functional consequences and regulation mechanisms of alternative cleavage and polyadenylation
[J]. Hereditas(Beijing), 2021, 43(1): 4-15.
|
[7] |
Taotao Wang, Yong Yang, Wei Wei, Chentao Lin, Liuyin Ma.
Identification and expression analyses of the NAC transcription factor family in Spartina alterniflora
[J]. Hereditas(Beijing), 2020, 42(2): 194-211.
|
[8] |
Huiyou Chen, Jianmin Zhang, Baisen Li, Yonglin Deng, Gongwei Zhang.
Progress on meiotic gene expression and epigenetic regulation of male sterility in Dzo cattle
[J]. Hereditas(Beijing), 2020, 42(11): 1081-1092.
|
[9] |
Xiaomeng Gao, Zhihua Zhang.
Three-dimensional structure and function of chromatin regulated by “liquid-liquid phase separation” of biological macromolecules.
[J]. Hereditas(Beijing), 2020, 42(1): 45-56.
|
[10] |
Qichao Yu,Bin Song,Xuanxuan Zou,Ling Wang,Dequan Liu,Bo Li,Kun Ma.
Analysis of normal tissues adjacent to the tumour-specific expressed genes in breast cancer
[J]. Hereditas(Beijing), 2019, 41(7): 625-633.
|
[11] |
Tianpei Shi,Li Zhang.
Application of whole transcriptomics in animal husbandry
[J]. Hereditas(Beijing), 2019, 41(3): 193-205.
|
[12] |
Wang Dezhou,Mo Xiaoting,Zhang Xia,Xu Miaoyun,Zhao Jun,Wang Lei.
Isolation and functional characterization of a stress-responsive transcription factor ZmC2H2-1 in Zea mays
[J]. Hereditas(Beijing), 2018, 40(9): 767-778.
|
[13] |
Qingqian Ding,Xiaoting Wang,Liqin Hu,Xin Qi,Linhao Ge,Weiya XU,Zhaoshi Xu,Yongbin Zhou,Guanqing Jia,Xianmin Diao,Donghong Min,Youzhi Ma,Ming Chen.
MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress
[J]. Hereditas(Beijing), 2018, 40(4): 327-338.
|
[14] |
Yingxia Li, Tingting Zhang, Lei Ma.
Structural characteristics of natural chimeric genes and their implications for gene design
[J]. Hereditas(Beijing), 2018, 40(2): 135-144.
|
[15] |
Jian Shi,Yanming Li,Xiangdong Fang.
The mechanism and clinical significance of long noncoding RNA-mediated gene expression via nuclear architecture
[J]. Hereditas(Beijing), 2017, 39(3): 189-199.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|