[1] Collins DA, Hawkey PM, Riley TV. Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control , 2013, 2(1): 21. [2] Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis , 2008, 47(9): 1162-1170. [3] Kelly CP, LaMont JT. Clostridium difficile -more difficult than ever. N Engl J Med , 2008, 359(18): 1932-1940. [4] Huang HH, Wu S, Wang MG, Zhang YY, Fang H, Palmgren AC, Weintraub A, Nord CE. Molecular and clinical characteristics of Clostridium difficile infection in a University Hospital in Shanghai, China. Clin Infect Dis , 2008, 47(12): 1606-1608. [5] 陈云波, 吴微珍, 鲁海峰, 杨介钻, 王保红, 孔海深, 李兰娟. 艰难梭菌相关性腹泻患者50例临床特征及其病原菌耐药性分析. 浙江医学, 2010, 32(11): 1632-1634, 1640. [6] Wang P, Zhou YL, Wang ZQ, Xie S, Chen Y, Jiang B, Zhang T, Lin MY, LI RH, Tan JS. Identification of Clostridium difficile ribotype 027 for the first time in Mainland China. Infect Control Hosp Epidemiol , 2014, 35(1): 95-98. [7] Owens RJ, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis , 2008, 46(Suppl 1): S19-S31. [8] Tickler IA, Goering RV, Whitmore JD, Lynn ANW, Persing DH, Tenover FC. Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob Agents Chemother , 2014, 58(7): 4214-4218. [9] Lachowicz D, Pituch H, Obuch-Woszczatynski P. Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe , 2014, 31: 37-41. [10] Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol , 2013, 108(4): 478-498, 499. [11] Peláez T, Alcalá L, Alonso R, Martín-López A, García-Arias V, Marín M, Bouza E. In vitro activity of ramoplanin against Clostridium difficile , including strains with reduced susceptibility to vancomycin or with resistance to metronidazole. Antimicrob Agents Chemother , 2005, 49(3): 1157-1159. [12] Huang H, Fang H, Weintraub A, Nord CE. Distinct ribotypes and rates of antimicrobial drug resistance in Clostridium difficile from Shanghai and Stockholm. Clin Microbiol Infect , 2009, 15(12): 1170-1173. [13] Huang HH, Weintraub A, Fang H, Wu S, Zhang YY, Nord CE. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe , 2010, 16(6): 633-635. [14] Roberts S, Heffernan H, Al Anbuky N, Pope C, Paviour S, Camp T, Swager T. Molecular epidemiology and susceptibility profiles of Clostridium difficile in New Zealand, 2009. N Z Med J , 2011, 124(1332): 45-51. [15] Tenover FC, Tickler IA, Persing DH. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob Agents Chemother , 2012, 56(6): 2929-2932. [16] Liao CH, Ko WC, Lu JJ, Hsueh PR. Characterizations of clinical isolates of Clostridium difficile by toxin genotypes and by susceptibility to 12 antimicrobial agents, including fidaxomicin (OPT-80) and rifaximin: a multicenter study in Taiwan. Antimicrob Agents Chemother , 2012, 56(7): 3943-3949. [17] Kim J, Kang JO, Pai H, Choi TY. Association between PCR ribotypes and antimicrobial susceptibility among Clostridium difficile isolates from healthcare-associated infections in South Korea. Int J Antimicrob Agents , 2012, 40(1): 24-29. [18] Goudarzi M, Goudarzi H, Alebouyeh M, Azimi Rad M, Shayegan Mehr FS, Zali MR, Aslani MM. Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iran Red Crescent Med J , 2013, 15(8): 704-711. [19] Terhes G, Maruyama A, Latkóczy K, Szikra L, Konkoly-Thege M, Princz G, Nagy E, Urbán E. In vitro antibiotic susceptibility profile of Clostridium difficile excluding PCR ribotype 027 outbreak strain in Hungary. Anaerobe , 2014, 30: 41-44. [20] 周芬芬, 吴湜, 徐少华, 黄海辉. 艰难梭菌临床分离株5年前后耐药性变化. 中国感染与化疗杂志, 2014, 14(2): 116-120. [21] Reigadas E, Alcalá L, Marín M, Pelaéz T, Martin A, Iglesias C, Bouza E. In vitro activity of surotomycin against contemporary clinical isolates of toxigenic Clostridium difficile strains obtained in Spain. J Antimicrob Chemother , 2015. [22] Waslawski S, Lo ES, Ewing SA, Young VB, Aronoff DM, Sharp SE, Novak-Weekley SM, Crist AE Jr, Dunne WM, Hoppe-Bauer J, Johnson M, Brecher SM, Newton DW, Walk ST. Clostridium difficile ribotype diversity at six health care institutions in the United States. J Clin Microbiol , 2013, 51(6): 1938-1941. [23] Peláez T, Sanchez R, Blazquez R, Catalan P, Munoz P, Bouza E. Metronidazole resistance in Clostridium difficile : a new emerging problem? In: Program and Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Orlando, FL, 1994, Abstract E-34: 50. [24] Peláez T, Alcalá L, Alonso R, Rodríguez-Créixems M, García-Lechuz JM, Bouza E. Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob Agents Chemother , 2002, 46(6): 1647-1650. [25] Peláez T, Cercenado E, Alcalá L, Marín M, Martín-López A, Martínez-Alarcón J, Catalán P, Sánchez-Somolinos M, Bouza E. Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol , 2008, 46(9): 3028-3032. [26] Baines S D, O'Connor R, Freeman J, Fawley WN, Harmanus C, Mastrantonio P, Kuijper EJ, Wilcox MH. Emergence of reduced susceptibility to metronidazole in Clostridium difficile . J Antimicrob Chemother , 2008, 62(5): 1046-1052. [27] Clinical and Laboratory Standards Institute. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 8th ed: Approved Standard. CLSI document M11-A8, Wayne, PA, USA, 2015. [28] European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoint tables, version 2.0. London: United Kingdom, 2012. [29] Löfmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis , 2010, 50(Suppl. 1): S16-S23. [30] Lynch T, Chong P, Zhang J, Hizon R, Du T, Graham MR, Beniac DR, Booth TF, Kibsey P, Miller M, Gravel D, Mulvey MR; Canadian Nosocomial Infection Surveillance Program (CNISP). Characterization of a stable, metronidazole-resistant Clostridium difficile clinical isolate. PLoS One , 2013, 8(1): e53757. [31] Chong PM, Lynch T, McCorrister S, Kibsey P, Miller M, Gravel D, Westmacott GR, Mulvey MR; Canadian Nosocomial Infection Surveillance Program (CNISP). Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole. PLoS One , 2014, 9(1): e82622. [32] Dworczynski A, Sokól B, Meisel-Mikolajczyk F. Antibiotic resistance of Clostridium difficile isolates. Cytobios , 1991, 65(262-263): 149-153. [33] Dong DF, Zhang LH, Chen X, Jiang C, Yu BQ, Wang XF, Peng YB. Antimicrobial susceptibility and resistance mechanisms of clinical Clostridium difficile from a Chinese tertiary hospital. Int J Antimicrob Agents , 2013, 41(1): 80-84. [34] Leeds J A, Sachdeva M, Mullin S, Barnes SW, Ruzin A. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J Antimicrob Chemother , 2014, 69(1): 41-44. [35] Goldstein EJC, Citron DM, Sears P, Babakhani F, Sambol SP, Gerding DN. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob Agents Chemother , 2011, 55(11): 5194-5199. [36] Seddon J, Sears P. Mutant prevention concentration of fidaxomicin for Clostridium difficile . In: Abstracts of the Fifty-second Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, USA, 2012. Abstract C1-1274. American Society for Microbiology, Washington, DC, USA. [37] Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis , 2002, 34(4): 482-492. [38] Huang HH, Weintraub A, Fang H, Nord CE. Antimicrobial resistance in Clostridium difficile . Int J Antimicrob Agents , 2009, 34(6): 516-522. [39] 张泓, 吴文娟, 李万华, 倪语星. 肺炎链球菌对大环内酯类抗生素耐药机制研究. 中国感染与化疗杂志, 2008, 8(1): 15-19. [40] Farrow KA, Lyras D, Rood JI. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile . Microbiology , 2001, 147(10): 2717-2728. [41] Spigaglia P, Barbanti F, Mastrantonio P. Detection of a genetic linkage between genes coding for resistance to tetracycline and erythromycin in Clostridium difficile . Microb Drug Resist , 2007, 13(2): 90-95. [42] Schmidt C, Löffler B, Ackermann G. Antimicrobial phenotypes and molecular basis in clinical strains of Clostridium difficile . Diagn Microbiol Infect Dis , 2007, 59(1): 1-5. [43] Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeño-Tárraga AM, Wang HM, Holden MTG, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet , 2006, 38(7): 779-786. [44] Dong DF, Chen X, Jiang C, Zhang LH, Cai G, Han LZ, Wang XF, Mao EQ, Peng YB. Genetic analysis of Tn916-like elements conferring tetracycline resistance in clinical isolates of Clostridium difficile . Int J Antimicrob Agents , 2014, 43(1): 73-77. [45] Spigaglia P, Barbanti F, Mastrantonio P. Tetracycline resistance gene tet (W) in the pathogenic bacterium Clostridium difficile . Antimicrob Agents Chemother , 2008, 52(2): 770-773. [46] 王明贵. 喹诺酮类抗菌药的耐药性及质粒介导耐药机制. 中华医学杂志, 2006, 86(9): 645-647. [47] Oh H, Edlund C. Mechanism of quinolone resistance in anaerobic bacteria. Clin Microbiol Infect , 2003, 9(6): 512-517. [48] Ackermann G, Tang Y J, Kueper R, Heisig P, Rodloff AC, Silva J Jr, Cohen SH. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA . Antimicrob Agents Chemother , 2001, 45(8): 2348-2353. [49] Drudy D, Quinn T, O'Mahony R, Kyne L, O'Gaora P, Fanning S. High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile . J Antimicrob Chemother , 2006, 58(6): 1264-1267. [50] Curry SR, Marsh JW, Shutt KA, Muto CA, O’Leary MM, Saul MI, William PA, Harrison LH. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis , 2009, 48(4): 425-429. [51] O’Connor JR, Galang MA, Sambol SP, Hecht DW, Vedantam G, Gerding DN, Johnson S. Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile . Antimicrob Agents Chemother , 2008, 52(8): 2813-2187. |