[1] Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res , 2003, 13(3): 524-530.
[2] Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S. High- throughput screening for induced point mutations. Plant Physiol , 2001, 126(2): 480-484 .
[3] Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science , 2003, 300(5620): 764.
[4] Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics , 2010, 186(2): 757-761.
[5] Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res , 2011, 39(1): 359-372.
[6] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821.
[7] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823.
[8] Shan QW, Gao CX. Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing) , 2015, 37(10): 953-973. 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37(10): 953-973.
[9] Ledford H. CRISPR, the disruptor. Nature , 2015, 522(7554): 20-24.
[10] Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Xi JZJ, Qiu JL, Gao CX. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol , 2013, 31(8): 686-688.
[11] Li JF, Norville JE, Aach J, McCormack M, Zhang DD, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol , 2013, 31(8): 688-691.
[12] Xie KB, Yang YN. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant , 2013, 6(6): 1975- 1983.
[13] Mao YF, Zhang H, Xu NF, Zhang BT, Gou F, Zhu JK. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant , 2013, 6(6): 2008- 2011.
[14] Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana . Plant J , 2014, 79(2): 348-359.
[15] Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol , 2014, 32(9) 947-951.
[16] Gao YB, Zhao YD. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR- mediated genome editing. J Integr Plant Biol , 2014, 56(4): 343-349.
[17] Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li HY, Lin YR, Xie YY, Shen, RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant , 2015, 8(8): 1274-1284.
[18] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-Guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826.
[19] Johnson RA, Gurevich V, Filler S, Samach A, Levy AA. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta . Plant Mol Biol , 2015, 87(1-2): 143-156.
[20] Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ. Egg cell-specific promoter-controlled CRISPR/ Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol , 2015, 16: 144.
[21] Mao YF, Zhang ZJ, Feng ZY, Wei PL, Zhang H, Botella JR, Zhu JK. Development of germ-line-specific CRISPR- Cas9 systems to improve the production of heritable gene modifications in Arabidopsis . Plant Biotechnol J , 2015, doi:10.1111/pbi.12468.
[22] Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta , 2015, 241(1): 271-284.
[23] Yan LH, Wei SW, Wu YR, Hu RL, Li HJ, Yang WC, Xie Q. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant , 2015, 8(12): 1820-1823.
[24] Ali Z, Abul-Faraj A, Li LX, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh- Kumar S, Mahfouz MM. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant , 2015, 8(8): 1288-1291.
[25] Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL, Clasen BM, Coffman A, Retterath A, Mathis L, Voytas DF, Zhang F. Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant , 2015, 9(8): 1425- 1427.
[26] Svitashev S, Young JK, Schwartz C, Gao HR, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol , 2015, 169(2): 931-945.
[27] Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One , 2008, 3(11): e3647.
[28] Gibson DG, Young L, Chuang RY, Venter JC, Hutchison III CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods , 2009: 6, 343-345.
[29] Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol , 2014, 14: 327.
[30] Xie KB, Minkenberg B, Yang YN. Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA , 2015, 112(11): 3570-3575.
[31] Zhang H, Zhang JS, Wei PL, Zhang BT, Gou F, Feng ZY, Mao YF, Yang L, Zhang H, Xu NF, Zhu JK. The CRISPR/ Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J , 2014, 12(6): 797-807.
[32] Zhou HB, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res , 2014, 42(17): 10903-10914.
[33] Xu RF, Li H, Qin RY, Wang L, Li L, Wei PC, Yang JB. Gene targeting using the Agrobacterium tumefaciens -mediated CRISPR-Cas system in rice. Rice (N Y) , 2014, 7(1): 5.
[34] Feng ZY, Mao YF, Xu NF, Zhang BT, Wei PL, Yang DL, Wang Z, Zhang ZJ, Zheng R, Yang L, Zeng L, Liu XD, Zhu JK. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis . Proc Natl Acad Sci USA , 2014, 111(12): 4632-4637.
[35] Gao JP, Wang GH, Ma SY, Xie XD, Wu XW, Zhang XT, Wu YQ, Zhao P, Xia QY. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum . Plant Mol Biol , 2015, 87(1-2): 99-110.
[36] Brooks C, Nekrasov V, Lippman ZB, van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol , 2014, 166(3): 1292-1297.
[37] Wang SH, Zhang SB, Wang WX, Xiong XY, Meng FR, Cui X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep , 2015, 34(9): 1473- 1476.
[38] Fan D, Liu TT, Li CF, Jiao B, Li S, Hou YS, Luo KM. Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Sci Rep , 2015, 5: 12217.
[39] Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science , 2015, 343(6166): 80-84.
[40] Mikami M, Toki S, Endo M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol , 2015, 88(6): 561-572.
[41] Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell , 2013, 13(6): 659-662.
[42] Gantz VM, Bier E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science , 2015, 348(6233): 442-444.
[43] Liang Z, Zhang K, Chen KL, Gao CX. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics , 2014, 41(2): 63-68.
[44] Liu TT, Fan D, Ran LY, Jiang YZ, Liu R, Luo KM. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus . Hereditas (Beijing) , 2015, 37(10): 1044-1052. 刘婷婷, 范迪, 冉玲玉, 姜渊忠, 刘瑞, 罗克明. 应用CRISPR/Cas9技术在杨树中高效敲除多个靶基因. 遗传, 2015, 37(10): 1044-1052
[45] Ji X, Zhang HW, Zhang Y, Wang YP, Gao CX. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plant , 2015, doi:10.1038/NPLANTS.2015.144.
[46] Qiu P, Shandilya H, D'Alessio JM, O’Connor K, Durocher J, Gerard GF. Mutation detection using Surveyor nuclease. Biotechniques , 2004, 36(4): 702-707.
[47] Mashal RD, Koontz J, Sklar J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet , 1995, 9(2): 177-183.
[48] Xue LJ, Tsai CJ. AGEseq: analysis of genome editing by sequencing. Mol Plant , 2015, 8(9): 1428-1430, doi:10.1016/j.molp.2015.06.001.
[49] Ma XL, Chen LT, Zhu QL, Chen YL, Liu YG. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Mol Plant , 2015, 8(8): 1285-1287.
[50] Liu WZ, Xie XR, Ma XL, Li J, Chen JH, Liu YG. DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant , 2015, 8(9): 1431-1433.
[51] Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell , 2014, 156(5): 935-949.
[52] Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell , 2013, 154(6): 1380-1389.
[53] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature , 2015, 517(7536): 583-588.
[54] Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell , 2015, 163(3): 759-771. |