遗传 ›› 2022, Vol. 44 ›› Issue (8): 682-694.doi: 10.16288/j.yczz.22-154
姜明亮1(), 郎红1(), 李晓楠2, 祖野2, 赵靖1, 彭沈凌1, 刘振1, 战宗祥2(), 朴钟云2()
收稿日期:
2022-05-10
修回日期:
2022-07-23
出版日期:
2022-08-20
发布日期:
2022-08-08
通讯作者:
战宗祥,朴钟云
E-mail:jiangmingliang@jlnku.edu.cn;langhong@jlnku.edu.cn;zhanzxiang@syau.edu.cn;zypiao@syau.edu.cn
作者简介:
姜明亮,博士,讲师,研究方向:蔬菜分子生物学。E-mail: 基金资助:
Mingliang Jiang1(), Hong Lang1(), Xiaonan Li2, Ye Zu2, Jing Zhao1, Shenling Peng1, Zhen Liu1, Zongxiang Zhan2(), Zhongyun Piao2()
Received:
2022-05-10
Revised:
2022-07-23
Online:
2022-08-20
Published:
2022-08-08
Contact:
Zhan Zongxiang,Piao Zhongyun
E-mail:jiangmingliang@jlnku.edu.cn;langhong@jlnku.edu.cn;zhanzxiang@syau.edu.cn;zypiao@syau.edu.cn
摘要:
孤基因(orphan genes)处在一个特殊的进化分支上,和其他任何已鉴定的基因没有显著的序列相似性。孤基因普遍存在于每个物种中,比较基因组学分析发现所有已测序的物种中均包含一部分孤基因,不同的筛选条件所获得的数量不等。孤基因经常与各种胁迫响应、物种特异性进化和物质代谢调节相关联。但多数孤基因没有被很好的注释,甚至没有可以被识别的功能结构域,为孤基因的功能表征带来了一定困难。相对于保守基因而言,孤基因的研究较少,这就导致了孤基因的重要性可能被“埋没”。本文从孤基因起源与进化、植物孤基因筛选及功能等方面进行了综述,并分析了目前存在的挑战和未来的研究重点与解决方案,以期为研究孤基因功能及其作用机制提供理论基础。
姜明亮, 郎红, 李晓楠, 祖野, 赵靖, 彭沈凌, 刘振, 战宗祥, 朴钟云. 植物孤基因研究进展[J]. 遗传, 2022, 44(8): 682-694.
Mingliang Jiang, Hong Lang, Xiaonan Li, Ye Zu, Jing Zhao, Shenling Peng, Zhen Liu, Zongxiang Zhan, Zhongyun Piao. Progress on plant orphan genes[J]. Hereditas(Beijing), 2022, 44(8): 682-694.
表1
代表性植物孤基因筛选结果"
物种 | 筛选程序 | E-value | 孤基因数量 | 孤基因占比 | 参考文献 |
---|---|---|---|---|---|
拟南芥(Arabidopsis thaliana) | BLASTP和TBLASTN | 1E-01 | 165个 | ~0.6% | [ |
BLASTP、BLASTN、TBLASTN 和PSI-BLAST | 1E-03 | 958个 | ~3% | [ | |
BLASTP和TBLASTN | 1E-05 | 1324个 | ~5% | [ | |
白菜(Brassica rapa) | BLASTP、BLASTN和TBLASTN | 1E-03 | 529个芸薹种孤基因 | ~1% | [ |
水稻(Oryza sativa) | BLASTP和BLASTN | 1E-04 | 1926个 | ~3% | [ |
BLAST和BLAT | 1E-02 | 37个 | ~0.0006% | [ | |
BLASTP和TBLASTN | 1E-01 | 638个 | ~1% | [ | |
杨树(Populus trichocarpa) | BLASTP和TBLASTN | 1E-01 | 109个 | ~0.2% | [ |
BLASTP和TBLASTN | 1E-02 | 40个 | ~0.3% | [ | |
豇豆(Vigna unguiculata) | BLAST和基于微阵列的基因组杂交 | 1E-10 | 578个 | ~2% | [ |
蜡烛果(Aegiceras corniculatum) | BLASTP和TBLASTN | 1E-05 | 4823个 | ~12% | [ |
甜橙(Citrus sinensis) | BLASTP和TBLASTN | 1E-05 | 296个柑橘属特异基因和 1039个甜橙特异基因 | ~1%和~4% | [ |
木豆(Cajanus cajan) | BLASTP、BLASTN和TBLASTN | 1E-02 | 266个菜豆科孤基因 | 1% | [ |
高粱(Sorghum bicolor) | BLASTN和BLASTX | 1E-02 | 3864个 | — | [ |
BLASTP和PSI-BLAST | 1E-05 | 3607个 | ~11% | [ | |
玉米(Zea mays) | BLASTP和PSI-BLAST | 1E-05 | 20,021个 | ~32% | [ |
二穗短柄草 (Brachypodium distachyon) | BLASTP和PSI-BLAST | 1E-05 | 3281个 | ~10% | [ |
烟草(Nicotiana benthamiana) | TBLASTX | 1E-10 | 571个 | ~8% | [ |
马铃薯(Solanum tuberosum) | TBLASTX | 1E-10 | 4825个 | ~13% | [ |
BLASTP和TBLASTN | 1E-05 | 2521个 | ~0.06% | [ | |
番茄(Solanum lycopersicum) | TBLASTX | 1E-10 | 3151个 | ~10% | [ |
辣椒(Capsicum annuum) | TBLASTX | 1E-10 | 1531个 | ~12% | [ |
矮牵牛(Petunia hybrida) | TBLASTX | 1E-10 | 512个 | ~11% | [ |
小麦(Triticum aestivum) | BLASTN和BLASTX | 1E-02 | 3809个 | — | [ |
苹果(Malus domestica Borkh.) | BLASTP | 1E-10 | 11,444个 | ~20% | [ |
葡萄(Vitis vinifera) | BLASTP和TBLASTN | 1E-02 | 2009个 | ~7% | [ |
[1] |
Campbell MA, Zhu W, Jiang N, Lin HN, Ouyang S, Childs KL, Haas BJ, Hamilton JP, Buell CR. Identification and characterization of lineage-specific genes within the Poaceae. Plant Physiol, 2007, 145(4): 1311-1322.
doi: 10.1104/pp.107.104513 pmid: 17951464 |
[2] |
Weisman CM, Murray AW, Eddy SR. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol, 2020, 18(11): e3000862.
doi: 10.1371/journal.pbio.3000862 |
[3] |
Wilson GA, Bertrand N, Patel Y, Hughes JB, Feil EJ, Field D. Orphans as taxonomically restricted and ecologically important genes. Microbiology (Reading), 2005, 151(Pt 8): 2499-2501.
doi: 10.1099/mic.0.28146-0 |
[4] |
Fischer D, Eisenberg D. Finding families for genomic ORFans. Bioinformatics, 1999, 15(9): 759-762.
pmid: 10498776 |
[5] |
Dujon B. The yeast genome project: what did we learn? Trends Genet, 1996, 12(7): 263-270.
pmid: 8763498 |
[6] |
Domazet-Lošo T, Tautz D. An evolutionary analysis of orphan genes in Drosophila. Genome Res, 2003, 13(10): 2213-2219.
pmid: 14525923 |
[7] | Tautz D, Neme R, Domazet-Lošo T. Evolutionary origin of orphan genes. eLS, 2013, 1-8. |
[8] |
Yin YB, Fischer D. Identification and investigation of ORFans in the viral world. BMC Genomics, 2008, 9: 24.
doi: 10.1186/1471-2164-9-24 |
[9] |
Bianchi MM, Sartori G, Vandenbol M, Kaniak A, Uccelletti D, Mazzoni C, Rago JPD, Carignani G, Slonimski PP, Frontali L. How to bring orphan genes into functional families. Yeast, 1999, 15(6): 513-526.
pmid: 10234789 |
[10] |
Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill X, Albà MM. Origin of primate orphan genes: a comparative genomics approach. Mol Biol Evol, 2009, 26(3): 603-612.
doi: 10.1093/molbev/msn281 pmid: 19064677 |
[11] |
Arendsee ZW, Li L, Wurtele ES. Coming of age: orphan genes in plants. Trends Plant Sci, 2014, 19(11): 698-708.
pmid: 25151064 |
[12] |
Luhua S, Hegie A, Suzuki N, Shulaev E, Luo XZ, Cenariu D, Ma V, Kao S, Lim J, Gunay MB, Oosumi T, Lee SC, Harper J, Cushman J, Gollery M, Girke T, Bailey-Serres J, Stevenson RA, Zhu JK, Mittler R. Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol Plant, 2013, 148(3): 322-333.
doi: 10.1111/ppl.12013 pmid: 23517122 |
[13] |
Striepen B, Pruijssers AJP, Huang JL, Li C, Gubbels MJ, Umejiego NN, Hedstrom L, Kissinger JC. Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc Natl Acad Sci USA, 2004, 101(9): 3154-3159.
doi: 10.1073/pnas.0304686101 |
[14] |
Palmieri N, Kosiol C, Schlötterer C. The life cycle of Drosophila orphan genes. Elife, 2014, 3: e01311.
doi: 10.7554/eLife.01311 |
[15] |
Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG. More than just orphans: are taxonomically- restricted genes important in evolution? Trends Genet, 2009, 25(9): 404-413.
doi: 10.1016/j.tig.2009.07.006 |
[16] |
Johnson BR, Tsutsui ND. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genomics, 2011, 12: 164.
doi: 10.1186/1471-2164-12-164 pmid: 21447185 |
[17] | Nelson PA, Buggs RJA eds. Next generation apomorphy:the ubiquity of taxonomically restricted genes. Cambridge: Cambridge University Press, 2016, 237-263. |
[18] | Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes. Nat Rev Genet, 2011, 12(10): 692-702. |
[19] |
Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res, 2002, 12(1): 47-56.
doi: 10.1101/gr.203201 |
[20] |
Lin HN, Moghe G, Ouyang S, Iezzoni A, Shiu SH, Gu X, Buell CR. Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana. BMC Evol Biol, 2010, 10: 41.
doi: 10.1186/1471-2148-10-41 |
[21] |
Cai J, Zhao RP, Jiang HF, Wang W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics, 2008, 179(1): 487-496.
doi: 10.1534/genetics.107.084491 |
[22] |
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290(5494): 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452 |
[23] |
Silveira AB, Trontin C, Cortijo S, Barau J, Del Bem LEV, Loudet O, Colot V, Vincentz M. Extensive natural epigenetic variation at a de novo originated gene. PLoS Genet, 2013, 9(4): e1003437.
doi: 10.1371/journal.pgen.1003437 |
[24] |
Wissler L, Gadau J, Simola DF, Helmkampf M, Bornberg-Bauer E. Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol Evol, 2013, 5(2): 439-455.
doi: 10.1093/gbe/evt009 pmid: 23348040 |
[25] |
Donoghue MT, Keshavaiah C, Swamidatta SH, Spillane C. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol Biol, 2011, 11: 47.
doi: 10.1186/1471-2148-11-47 pmid: 21332978 |
[26] |
Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, Charloteaux B, Hidalgo CA, Barbette J, Santhanam B, Brar GA, Weissman JS, Regev A, Thierry-Mieg N, Cusick ME, Vidal M. Proto-genes and de novo gene birth. Nature, 2012, 487(7407): 370-374.
doi: 10.1038/nature11184 |
[27] |
Prabh N, Rödelsperger C. De novo, divergence, and mixed origin contribute to the emergence of orphan genes in Pristionchus Nematodes. G3 (Bethesda), 2019, 9(7): 2277-2286.
doi: 10.1534/g3.119.400326 |
[28] |
Schlötterer C. Genes from scratch-the evolutionary fate of de novo genes. Trends Genet, 2015, 31(4): 215-219.
doi: 10.1016/j.tig.2015.02.007 pmid: 25773713 |
[29] |
Zhang WY, Gao YX, Long MY, Shen BR. Origination and evolution of orphan genes and de novo genes in the genome of Caenorhabditis elegans. Sci China Life Sci, 2019, 62(4): 579-593.
doi: 10.1007/s11427-019-9482-0 |
[30] |
Singh U, Wurtele ES. How new genes are born. Elife, 2020, 9: e55136.
doi: 10.7554/eLife.55136 |
[31] | Perochon A, Jianguang J, Kahla A, Arunachalam C, Scofield SR, Bowden S, Wallington E, Doohan FM.TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum. Plant Physiol, 2015, 169(4): 2895-2906. |
[32] |
Albà MM, Castresana J. On homology searches by protein blast and the characterization of the age of genes. BMC Evol Biol, 2007, 7: 53.
pmid: 17408474 |
[33] |
Domazet-Lošo T, Brajković J, Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet, 2007, 23(11): 533-539.
pmid: 18029048 |
[34] |
Tang K, Yang RL. Origin and evolution of soybean protein-coding genes. Chin Bull Bot, 2019, 54(3): 316- 327.
doi: 10.11983/CBB18176 |
唐康, 杨若林. 大豆蛋白编码基因起源与进化. 植物学报, 2019, 54(3): 316-327.
doi: 10.11983/CBB18176 |
|
[35] |
Hamari Z, Amillis S, Drevet C, Apostolaki A, Vágvölgyi C, Diallinas G, Scazzocchio C.Convergent evolution and orphan genes in the Fur4p-like family and characterization of a general nucleoside transporter in Aspergillus nidulans. Mol Microbiol, 2009, 73(1): 43-57.
doi: 10.1111/j.1365-2958.2009.06738.x |
[36] | Plissonneau C, Stürchler A, Croll D. The evolution of orphan regions in genomes of a fungal pathogen of wheat. mBio, 2016, 7(5): e01231-e01316. |
[37] |
Seoighe C, Wolfe KH. Yeast genome evolution in the post-genome era. Curr Opin Microbiol, 1999, 2(5): 548-554.
pmid: 10508730 |
[38] |
Beike AK, Lang D, Zimmer AD, Wüst F, Trautmann D, Wiedemann G, Beyer P, Decker EL, Reski R. Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytol, 2015, 205(2): 869-881.
doi: 10.1111/nph.13004 pmid: 25209349 |
[39] |
Yang XH, Jawdy S, Tschaplinski TJ, Tuskan GA. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus. Genomics, 2009, 93(5): 473-480.
doi: 10.1016/j.ygeno.2009.01.002 |
[40] | Lin WL, Cai B, Cheng ZM. Identification and characterization of lineage-specific genes in Populus trichocarpa. Plant Cell Tissue Organ Cult, 2014, 116(2): 217-225. |
[41] | Guo WJ, Li P, Ling J, Ye SP. Significant comparative characteristics between orphan and nonorphan genes in the rice (Oryza sativa L.) genome. Comp Funct Genomics, 2007, 2007: 21676. |
[42] |
Murali TM, Wu CJ, Kasif S. The art of gene function prediction. Nat Biotechnol, 2006, 24(12): 1474-1476.
pmid: 17160037 |
[43] | Jiang ML, Dong XS, Lang H, Pang WX, Zhan ZX, Li XN, Piao ZY. Mining of Brassica-specific genes (BSGs) and their induction in different developmental stages and under Plasmodiophora brassicae stress in Brassica rapa. Int J Mol Sci, 2018, 19(7): 2064. |
[44] |
Jiang ML, Zhan ZX, Li HY, Dong XS, Cheng F, Piao ZY. Brassica rapa orphan genes largely affect soluble sugar metabolism. Hortic Res, 2020, 7(1): 181.
doi: 10.1038/s41438-020-00403-z |
[45] | Jin GH, Zhou YL, Yang H, Hu YT, Shi Y, Li L, Siddique AN, Liu CN, Zhu AD, Zhang CJ, Li DZ. Genetic innovations: transposable element recruitment and de novo formation lead to the birth of orphan genes in the rice genome. J Syst Evol, 2021, 59(2): 341-351. |
[46] |
Li GJ, Wu XY, Hu YW, Muñoz-Amatriaín M, Luo J, Zhou W, Wang BG, Wang Y, Wu XH, Huang LJ, Lu ZF, Xu P. Orphan genes are involved in drought adaptations and ecoclimatic-oriented selections in domesticated cowpea. J Exp Bot, 2019, 70(12): 3101-3110.
doi: 10.1093/jxb/erz145 |
[47] |
Graham MA, Silverstein KAT, Cannon SB, VandenBosch KA. Computational identification and characterization of novel genes from legumes. Plant Physiol, 2004, 135(3): 1179-1197.
doi: 10.1104/pp.104.037531 |
[48] | Ma DN, Ding QS, Guo ZJ, Zhao ZZ, Wei LF, Li YY, Song SW, Zheng HL. Identification, characterization and expression analysis of lineage-specific genes within mangrove species Aegiceras corniculatum. Mol Genet Genomics, 2021, 296(6): 1235-1247. |
[49] |
Xu YT, Wu GZ, Hao BH, Chen LL, Deng XX, Xu Q. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis). BMC Genomics, 2015, 16: 995.
doi: 10.1186/s12864-015-2211-z |
[50] |
Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD, Chen CL, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen JJ, Gao S, Xing F, Lan H, Chang JW, Ge XH, Lei Y, Hu Q, Miao Y, Wang L, Xiao SX, Biswas MK, Zeng WF, Guo F, Cao HB, Yang XM, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang ZH, Guo WW, Kuang HH, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan YJ. The draft genome of sweet orange (Citrus sinensis). Nat Genet, 2013, 45(1): 59-66.
doi: 10.1038/ng.2472 |
[51] | Wu GZ.The identification of the Citrus specific genes and their origin pattern analysis[Dissertation]. Huazhong Agricultural University, 2016. |
吴桂枝.柑橘特异基因的鉴定及其起源方式分析[学位论文]. 华中农业大学, 2016. | |
[52] |
Varshney RK, Chen WB, Li YP, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan GY, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang BC, Zhang GY, Yang HM, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol, 2011, 30(1): 83-89.
doi: 10.1038/nbt.2022 pmid: 22057054 |
[53] | Tao Y.Construction of an EST-based digital northern platform for common wheat genes and identification of wheat specific genes relative to rice[Dissertation]. Nanjing Agricultural University, 2010. |
陶晔.小麦基因电子表达分析平台的构建及相对于水稻的小麦特异基因的鉴定[学位论文]. 南京农业大学, 2010. | |
[54] | Yao CS, Yan HW, Zhang XD, Wang RF. A database for orphan genes in Poaceae. Exp Ther Med, 2017, 14(4): 2917-2924. |
[55] |
Rensink WA, Lee YD, Liu J, Iobst S, Ouyang S, Buell CR. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics, 2005, 6: 124.
pmid: 16162286 |
[56] | Cheng ZN.Identification, characterization, expression and function analysis of lineage-specific genes in potato [Dissertation]. Huazhong Agricultural University, 2019. |
程正楠.马铃薯种系特异性基因的鉴定、特征描述、表达和功能分析[学位论文]. 华中农业大学, 2019. | |
[57] |
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen ZT, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu CQ, Chu VT, King ST, Vick J, Tao QZ, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet, 2010, 42(10): 833-839.
doi: 10.1038/ng.654 |
[58] | Liang YH, Chen F, Wang G, Wang M, Feng GQ, Cheng ZM. Bioinformatics identification, analysis of gene structure and expression characters on lineage-specific genes of grapevine. J Nanjing Agric Univ, 2013, 36(6): 19-24. |
梁英海, 陈飞, 王刚, 王敏, 冯冠乔, 程宗明. 葡萄谱系特有基因生物信息学识别、基因结构与表达特性分析. 南京农业大学学报, 2013, 36(6): 19-24. | |
[59] | Li CH, Cai B, Liang YH, Jia SL. The expression analysis and function prediction of orphan genes in grape. Genomics Appl Biol, 2013, 32(2): 240-245. |
李成慧, 蔡斌, 梁英海, 贾士禄. 葡萄孤儿基因的表达分析和功能推测. 基因组学与应用生物学, 2013, 32(2): 240-245. | |
[60] |
Ekstrom A, Yin YB. ORFanFinder: automated identification of taxonomically restricted orphan genes. Bioinformatics, 2016, 32(13): 2053-2055.
doi: 10.1093/bioinformatics/btw122 pmid: 27153690 |
[61] | Aoki Y, Okamura Y, Tadaka S, Kinoshita K, Obayashi T. ATTED-II in 2016: A plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol, 2016, 57(1): e5. |
[62] | Conte MG, Gaillard S, Lanau N, Rouard M, Périn C. GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res, 2008, 36: D991-D998. |
[63] | Valentin G, Abdel T, Gaëtan D, Jean-François D, Matthieu C, Mathieu R. GreenPhylDB v5: a comparative pangenomic database for plant genomes. Nucleic Acids Res, 2021, 49(D1): D1464-D1471. |
[64] | Gao QJ, Yan HW, Xia EH, Zhang SH, Li SW.TOGD: a database of orphan genes in Triticum aestivum. Int J Agric Biol, 2019, 22(5): 961-966. |
[65] |
Gao QJ, Jin X, Xia EH, Wu XW, Gu LC, Yan HW, Xia YC, Li SW. Identification of orphan genes in unbalanced datasets based on ensemble learning. Front Genet, 2020, 11: 820.
doi: 10.3389/fgene.2020.00820 |
[66] | Moxon ER, Higgins CF. Functions for orphan genes. Nature, 1997, 389(6647): 120. |
[67] |
Li L, Foster CM, Gan QL, Nettleton D, James MG, Myers AM, Wurtele ES. Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J, 2009, 58(3): 485-498.
doi: 10.1111/j.1365-313X.2009.03793.x |
[68] |
Li L, Wurtele ES. The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean. Plant Biotechnol J, 2015, 13(2): 177-187.
doi: 10.1111/pbi.12238 |
[69] |
Li L, Zheng WG, Zhu YB, Ye HX, Tang BY, Arendsee ZW, Jones D, Li R, Ortiz D, Zhao XF, Du CL, Nettleton D, Scott MP, Salas-Fernandez MG, Yin Y, Wurtele ES. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proc Natl Acad Sci USA, 2015, 112(47): 14734-14739.
doi: 10.1073/pnas.1514670112 |
[70] | Jiang ML.Identification of Brassica rapa orphan genes and construction and evaluation of its transgenic library [Dissertation]. Shenyang Agricultural University, 2020. |
姜明亮.芸薹种孤基因的鉴定及其转基因库的构建和评价[学位论文]. 沈阳农业大学, 2020. | |
[71] |
Yadeta KA, Valkenburg DJ, Hanemian M, Marco Y, Thomma BPHJ. The Brassicaceae-specific EWR1 gene provides resistance to vascular wilt pathogens. PLoS One, 2014, 9(2): e88230.
doi: 10.1371/journal.pone.0088230 |
[72] |
Qi MS, Zheng WG, Zhao XF, Hohenstein JD, Kandel Y, O’Conner S, Wang YF, Du CL, Nettleton D, MacIntosh GC, Tylka GL, Wurtele ES, Whitham SA, Li L. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests. Plant Biotechnol J, 2019, 17(1): 252-263.
doi: 10.1111/pbi.12961 |
[73] |
Tanvir R, Ping WL, Sun JP, Cain M, Li XJ, Li L. AtQQS orphan gene and NtNF-YC4 boost protein accumulation and pest resistance in tobacco (Nicotiana tabacum). Plant Sci, 2022, 317: 111198.
doi: 10.1016/j.plantsci.2022.111198 |
[74] |
Luhua S, Ciftci-Yilmaz S, Harper J, Cushman J, Mittler R. Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function. Plant Physiol, 2008, 148(1): 280-292.
doi: 10.1104/pp.108.124875 pmid: 18614705 |
[75] |
Perochon A, Kahla A, Vranić M, Jia JG, Malla KB, Craze M, Wallington E, Doohan FM. A wheat NAC interacts with an orphan protein and enhances resistance to Fusarium head blight disease. Plant Biotechnol J, 2019, 17(10): 1892-1904.
doi: 10.1111/pbi.13105 |
[76] |
Jiang C, Hei RN, Yang Y, Zhang SJ, Wang QH, Wang W, Zhang Q, Yan M, Zhu GR, Huang PP, Liu HQ, Xu JR. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nat Commun, 2020, 11(1): 4382.
doi: 10.1038/s41467-020-18240-y pmid: 32873802 |
[77] |
Brennan CJ, Zhou BB, Benbow HR, Ajaz S, Karki SJ, Hehir JG, O’Driscoll A, Feechan A, Mullins E, Doohan FM. Taxonomically restricted wheat genes interact with small secreted fungal proteins and enhance resistance to Septoria tritici blotch disease. Front Plant Sci, 2020, 11: 433.
doi: 10.3389/fpls.2020.00433 pmid: 32477375 |
[78] | Jiang YF, Zhan ZX, Piao ZY, Zhang CY. Progresses and prospects of germplasms innovation for clubroot resistance and genetic improvement in Brassica napus. Acta Agron Sin, 2018, 44(11): 1592-1599. |
江莹芬, 战宗祥, 朴钟云, 张椿雨. 油菜抗根肿病资源创新与利用的研究进展与展望. 作物学报, 2018, 44(11): 1592-1599. | |
[79] |
Yang ZQ, Jiang YF, Gong JF, Li Q, Dun BC, Liu DX, Yin FF, Lei Y, Zhou XQ, Wang HY, Wang J, Zhan ZX, Shah N, Nwafor CC, Zhou YW, Chen P, Li Z, Li SS, Wang BR, Xiang J, Zhou YM, Li ZY, Piao ZY, Yang QY, Zhang CY. R gene triplication confers European fodder turnip with improved clubroot resistance. Plant Biotechnol J, 2022, 20(8): 1502-1517.
doi: 10.1111/pbi.13827 |
[80] |
Shen SQ, Peng M, Fang H, Wang ZX, Zhou S, Jing X, Zhang M, Yang CK, Guo H, Li YF, Lei L, Shi YH, Sun YY, Liu XQ, Xu CP, Tohge T, Yuan M, Fernie AR, Ning Y, Wang GL, Luo J. An Oryza-specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance. Sci Bull, 2021, 66(23): 2369-2380.
doi: 10.1016/j.scib.2021.03.015 |
[81] | Wang CY, Chen S, Feng AQ, Su J, Wang WJ, Feng JQ, Chen B, Zhang MY, Yang JY, Zeng LX, Zhu XY. Xa7, a small orphan gene harboring promoter trap for AvrXa7, leads to the durable resistance to Xanthomonas oryzae pv. oryzae. Rice (N Y), 2021, 14(1): 48. |
[82] |
Fang H, Shen SQ, Wang D, Zhang F, Zhang CY, Wang ZX, Zhou QQ, Wang RY, Tao H, He F, Yang CK, Peng M, Jing XY, Hao ZY, Liu XL, Luo J, Wang GL, Ning YS. A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice. Sci Bull, 2021, 66(23): 2381-2393.
doi: 10.1016/j.scib.2021.06.014 |
[83] |
Dossa K, Zhou R, Li DH, Liu AL, Qin L, Mmadi MA, Su RQ, Zhang YJ, Wang JQ, Gao Y, Zhang XR, You J. A novel motif in the 5’-UTR of an orphan gene ‘Big Root Biomass’ modulates root biomass in sesame. Plant Biotechnol J, 2021, 19(5): 1065-1079.
doi: 10.1111/pbi.13531 |
[84] | Cabrales-Orona G,Délano-Frier JP eds.eds. Searching for an identity:functional characterization of taxonomically restricted genes in grain amaranth. Switzerland: Springer International Publishing, 2021, 97-124. |
[85] | Wang HB, Gong M, Guo JY, Xin H, Tang LZ.Molecular cloning and prokaryotic expression of orphan gene Soloist of AP2/ERF gene family in Jatropha curcas. Sci Silvae Sin, 2018, 54(9): 60-69. |
王海波, 龚明, 郭俊云, 辛胡, 唐利洲. 麻疯树AP2/ERF基因家族孤儿Soloist的克隆与原核表达分析. 林业科学, 2018, 54(9): 60-69. | |
[86] | Liu CA.The role of orphan gene OsCPY in chilling tolerance of rice[Dissertation]. Nanchang University, 2018. |
刘长爱.孤儿基因OsCPY在水稻耐低温中的作用[学位论文]. 南昌大学, 2018. | |
[87] | Shuai YL.The function of orphan gene OsCPY in rice growth promotion[Dissertation]. Nanchang University, 2020. |
帅艳玲.孤儿基因OsCPY在水稻促生过程中的功能[学位论文]. 南昌大学, 2020. | |
[88] | Ma SW, Yuan Y, Tao Y, Jia HY, Ma ZQ. Identification, characterization and expression analysis of lineage- specific genes within Triticeae. Genomics, 2020, 112(2): 1343- 1350. |
[89] | O’Conner S, Neudorf A, Zheng W, Qi M, Zhao X, Du C, Nettleton D,Li L eds.eds. From Arabidopsis to crops:the Arabidopsis QQS orphan gene modulates nitrogen allocation across species. Switzerland: Springer International Publishing, 2018, 95-117. |
[90] | Jones DC, Zheng WG, Huang S, Du LC, Zhao XF, Yennamalli RM, Sen TZ, Nettleton D, Wurtele ES, Li L. A clade-specific Arabidopsis gene connects primary metabolism and senescence. Front Plant Sci, 2016, 7: 983. |
[91] | Zhang HP, Yin TM. Advances in lineage-specific genes. Hereditas (Beijing), 2015, 37(6): 544-553. |
张焕萍, 尹佟明. 谱系特有基因研究进展. 遗传, 2015, 37(6): 544-553. | |
[92] |
Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol, 2008, 148(2): 993-1003.
doi: 10.1104/pp.108.122457 |
[93] | Cui X, Lv Y, Chen ML, Nikoloski Z, Twell D, Zhang DB. Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. Mol Plant, 2015, 8(6): 935-945. |
[94] |
O’Conner S, Li L. Mitochondrial fostering: the mitochondrial genome may play a role in plant orphan gene evolution. Front Plant Sci, 2020, 11: 600117.
doi: 10.3389/fpls.2020.600117 |
[95] |
Ni F, Qi J, Hao QQ, Lyu B, Luo MC, Wang Y, Chen FJ, Wang SY, Zhang CZ, Epstein L, Zhao XY, Wang HG, Zhang XS, Chen CX, Sun L, Fu DL. Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat Commun, 2017, 8: 15121.
doi: 10.1038/ncomms15121 |
[96] | Shan QW, Gao CX. Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing), 2015, 37(10): 953-973. |
单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37(10): 953-973. | |
[97] | Li X, Shi W, Geng LZ, Xu JP. Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes. Hereditas (Beijing), 2020, 42(6): 556-564. |
李霞, 施皖, 耿立召, 许建平. CRISPR/Cas核糖核蛋白介导的植物基因组编辑. 遗传, 2020, 42(6): 556- 564. | |
[98] | Ma XL, Liu YG. CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants. Hereditas (Beijing), 2016, 38(2): 118-125. |
马兴亮, 刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析. 遗传, 2016, 38(2): 118-125. | |
[99] | Liu ZN, Yuan L, Sundaresan V, Yu XL.Screening and identification of CKI1 upstream transcription regulators in Arabidopsis. Hereditas (Beijing), 2019, 41(5): 430- 438. |
刘振宁, 袁黎, Venkatesan Sundaresan, 余小林. 拟南芥CKI1基因上游转录调控因子筛选及鉴定. 遗传, 2019, 41(5): 430-438. | |
[100] |
Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230): 245-246.
doi: 10.1038/340245a0 |
[101] |
Marcon E, Jain H, Bhattacharya A, Guo HB, Phanse S, Pu SY, Byram G, Collins BC, Dowdell E, Fenner M, Guo XH, Hutchinson A, Kennedy JJ, Krastins B, Larsen B, Lin ZY, Lopez MF, Loppnau P, Miersch S, Nguyen T, Olsen JB, Paduch M, Ravichandran M, Seitova A, Vadali G, Vogelsang MS, Whiteaker JR, Zhong GQ, Zhong N, Zhao L, Aebersold R, Arrowsmith CH, Emili A, Frappier L, Gingras AC, Gstaiger M, Paulovich AG, Koide S, Kossiakoff AA, Sidhu SS, Wodak SJ, Gräslund S, Greenblatt JF, Edwards AM. Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat Methods, 2015, 12(8): 725-731.
doi: 10.1038/nmeth.3472 pmid: 26121405 |
[1] | 邢超凡, 王闽涛, 王磊, 申欣. 两侧对称动物左右不对称发生机制研究进展[J]. 遗传, 2023, 45(6): 488-500. |
[2] | 李凯伦, 卢荆奥, 陈小辉, 张文清, 刘伟. 尿囊素促进破骨细胞缺陷斑马鱼骨折修复[J]. 遗传, 2023, 45(4): 341-353. |
[3] | 付孟, 李艳. 家马的起源历史与品种驯化特征[J]. 遗传, 2022, 44(3): 216-229. |
[4] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[5] | 吕孟冈, 刘艾嘉, 李庆伟, 苏鹏. RHR转录因子家族起源、功能以及进化机制的研究进展[J]. 遗传, 2021, 43(3): 215-225. |
[6] | 章誉兴, 吴宏, 于黎. 哺乳动物毛色调控机制及其适应性进化研究进展[J]. 遗传, 2021, 43(2): 118-133. |
[7] | 罗鑫, 宿兵. 三维基因组分析点亮人类大脑进化之谜[J]. 遗传, 2021, 43(2): 105-107. |
[8] | 朱医高, 李军, 逄越, 李庆伟. 七鳃鳗:生物进化和疾病研究的重要模式动物[J]. 遗传, 2020, 42(9): 847-857. |
[9] | 郭佳妮, 刘帆, 王璐. 斑马鱼血液疾病模型及应用[J]. 遗传, 2020, 42(8): 725-738. |
[10] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[11] | 刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[12] | 胡风越, 王克剑. STEME系统:一种助力体内定向进化的新工具[J]. 遗传, 2020, 42(3): 231-235. |
[13] | 唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249. |
[14] | 梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[15] | 彭威, 冯蒙洁, 陈皓, 韩宝瑜. 双翅目昆虫基因组研究进展[J]. 遗传, 2020, 42(11): 1093-1109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: