[1] | Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J, 2016, 35(9): 909-923. | [2] | Auerbach AD. Fanconi anemia and its diagnosis. Mutat Res/Fund Mol Mechan Mutag, 2009, 668(1-2): 4-10. | [3] | Sklavos MM, Giri N, Stratton P, Alter BP, Pinto LA. Anti-Müllerian hormone deficiency in females with Fanconi anemia. J Clin Endocrinol Metab, 2014, 99(5): 1608-1614. | [4] | Luo YH, Hartford SA, Zeng RZ, Southard TL, Shima N, Schimenti JC. Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling. PLoS Genet, 2014, 10(7): e1004471. | [5] | Bakker ST, de Winter JP, Te Riele H. Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models. Dis Model Mech, 2013, 6(1): 40-47. | [6] | Wang LC, Gautier J. The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Crit Rev Biochem Mol Biol, 2010, 45(5): 424-439. | [7] | Ruan CY, Han JH, Liu T, Huang J. Fanconi anemia and DNA interstrand cross-link repair. Scientia Sinica Vitae, 2014, 44(4): 387-396. | [7] | 阮春燕, 韩金花, 刘婷, 黄俊. 范可尼贫血症与DNA交联损伤修复. 中国科学: 生命科学, 2014, 44(4): 387-396. | [8] | Apostolou S, Whitmore SA, Crawford J, Lennon G, Sutherland GR, Callen DF, Ianzano L, Savino M, D'Apolito M, Notarangelo A, Memeo E, Piemontese MR, Zelante L, Savoia A, Gibson RA, Tipping AJ, Morgan NV, Hassock S, Jansen S, de Ravel TJ, Van Berkel C, Pronk JC, Easton DF, Mathew CG, Levran O, Verlander PC, Batish SD, Erlich T, Auerbach AD, Cleton-Jansen AM, Moerland EW, Cornelisse CJ, Doggett NA, Deaven LL, Moyzis RK. Positional cloning of the Fanconi anaemia group A gene. Nat Genet, 1996, 14(3): 324-328. | [9] | Meetei AR, Levitus M, Xue YT, Medhurst AL, Zwaan M, Ling C, Rooimans MA, Bier P, Hoatlin M, Pals G, de Winter JP, Wang WD, Joenje H. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet, 2004, 36(11): 1219-1224. | [10] | Strathdee CA, Gavish H, Shannon WR, Buchwald M. Cloning of cDNAs for Fanconi’s anaemia by functionnal complementation. Nature, 1992, 356(6372): 763-767. | [11] | de Winter JP, Rooimans MA, van Der Weel L, van Berkel CG, Alon N, Bosnoyan-Collins L, de Groot J, Zhi Y, Waisfisz Q, Pronk JC, Arwert F, Mathew CG, Scheper RJ, Hoatlin ME, Buchwald M, Joenje H. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nat Genet, 2000, 24(1): 15-16. | [12] | Meetei AR, Medhurst AL, Ling C, Xue YT, Singh TR, Bier P, Steltenpool J, Stone S, Dokal I, Mathew CG, Hoatlin M, Joenje H, de Winter JP, Wang WD. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet, 2005, 37(9): 958-963. | [13] | Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L, Bruun D, Thayer M, Cox B, Olson S, D'Andrea AD, Moses R, Grompe M. Positional cloning of a novel Fanconi anemia gene,FANCD2. Mol Cell, 2001, 7(2): 241-248. | [14] | Dorsman JC, Levitus M, Rockx D, Rooimans MA, Oostra AB, Haitjema A, Bakker ST, Steltenpool J, Schuler D, Mohan S, Schindler D, Arwert F, Pals G, Mathew CG, Waisfisz Q, de Winter JP, Joenje H. Identification of the Fanconi anemia complementation group I gene, FANCI. Cell Oncol, 2007, 29(3): 211-218. | [15] | Sims AE, Spiteri E, Sims III RJ, Arita AG, Lach FP, Landers T, Wurm M, Freund M, Neveling K, Hanenberg H, Auerbach AD, Huang TT. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol, 2007, 14(6): 564-567. | [16] | Smogorzewska A, Matsuoka S, Vinciguerra P, Mcdonald III ER, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D'Andrea AD, Elledge SJ. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell, 2007, 129(2): 289-301. | [17] | Wagner JE, Tolar J, Levran O, Scholl T, Deffenbaugh A, Satagopan J, Ben-Porat L, Mah K, Batish SD, Kutler DI, MacMillan ML, Hanenberg H, Auerbach AD. Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood, 2004, 103(8): 3226-3229. | [18] | Alter BP. The association between FANCD1/BRCA2 mutations and leukaemia. Br J Haematol, 2006, 133(4): 446-448. | [19] | Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, Elghalbzouri-Maghrani E, Steltenpool J, Rooimans MA, Pals G, Arwert F, Mathew CG, Zdzienicka MZ, Hiom K, De Winter JP, Joenje H. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet, 2005, 37(9): 934-935. | [20] | Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P, Batish SD, Kalb R, Velleuer E, Barral S, Ott J, Petrini J, Schindler D, Hanenberg H, Auerbach AD. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet, 2005, 37(9): 931-933. | [21] | Litman R, Peng M, Jin Z, Zhang F, Zhang JR, Powell S, Andreassen PR, Cantor SB. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell, 2005, 8(3): 255-265. | [22] | Jike WH, Wu ZF, Fan SH, Xi XG. Structure and evolution of the eukaryotic FANCJ-like proteins. Hereditas (Beijing), 2015, 37(2): 204-213. | [22] | 吉克伍合, 武泽峰, 范三红, 奚绪光. 真核生物FANCJ- like蛋白的结构与进化. 遗传, 2015, 37(2): 204-213. | [23] | Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet, 2006, 39(2): 162-164. | [24] | Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang WD, Livingston DM, Joenje H, de Winter JP. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet, 2006, 39(2): 159-161. | [25] | Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Dei?ler H, Engel C, Müller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet, 2010, 42(5): 410-414. | [26] | Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet, 2010, 42(5): 406-409. | [27] | Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A. Mutations of the SLX4 gene in Fanconi anemia. Nat Genet, 2011, 43(2): 142-146. | [28] | Schuster B, Knies K, Stoepker C, Velleuer E, Friedl R, Gottwald-Mühlhauser B, de Winter JP, Schindler D. Whole exome sequencing reveals uncommon mutations in the recently identified Fanconi anemia gene SLX4/FANCP. Hum Mutat, 2013, 34(1): 93-96. | [29] | Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J, Oostra AB, Eirich K, Korthof ET, Nieuwint AWM, Jaspers NGJ, Bettecken T, Joenje H, Schindler D, Rouse J, de Winter JP. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet, 2011, 43(2): 138-141. | [30] | Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y, Raams A, Trujillo JP, Minguillón J, Ramírez MJ, Pujol R, Casado JA, Ba?os R, Rio P, Knies K, Zú?iga S, Benítez J, Bueren JA, Jaspers NGJ, Sch?rer OD, de Winter JP, Schindler D, Surrallés J. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am J Hum Genet, 2013, 92(5): 800-806. | [31] | Kashiyama K, Nakazawa Y, Pilz DT, Guo CW, Shimada M, Sasaki K, Fawcett H, Wing JF, Lewin SO, Carr L, Li TS, Yoshiura KI, Utani A, Hirano A, Yamashita S, Greenblatt D, Nardo T, Stefanini M, McGibbon D, Sarkany R, Fassihi H, Takahashi Y, Nagayama Y, Mitsutake N, Lehmann AR, Ogi T. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet, 2013, 92(5): 807-819. | [32] | Ameziane N, May P, Haitjema A, van de Vrugt HJ, van Rossum-Fikkert SE, Ristic D, Williams GJ, Balk J, Rockx D, Li H, Rooimans MA, Oostra AB, Velleuer E, Dietrich R, Bleijerveld OB, Maarten Altelaar AF, Meijers-Heijboer H, Joenje H, Glusman G, Roach J, Hood L, Galas D, Wyman C, Balling R, den Dunnen J, de Winter JP, Kanaar R, Gelinas R, Dorsman JC. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat Commun, 2015, 6: 8829. | [33] | Wang AT, Kim T, Wagner JE, Conti BA, Lach FP, Huang AL, Molina H, Sanborn EM, Zierhut H, Cornes BK, Abhyankar A, Sougnez C, Gabriel SB, Auerbach AD, Kowalczykowski SC, Smogorzewska A. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol Cell, 2015, 59(3): 478-490. | [34] | Sawyer SL, Tian L, K?hk?nen M, Schwartzentruber J, Kircher M, University of Washington Centre for Mendelian Genomics, FORGE Canada Consortium, Majewski J, Dyment DA, Innes AM, Boycott KM, Moreau LA, Moilanen JS, Greenberg RA. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov, 2015, 5(2): 135-142. | [35] | Bunting SF, Callén E, Kozak ML, Kim JM, Wong N, López-Contreras AJ, Ludwig T, Baer R, Faryabi RB, Malhowski A, Chen HT, Fernandez-Capetillo O, D'Andrea A, Nussenzweig A. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell, 2012, 46(2): 125-135. | [36] | Hira A, Yoshida K, Sato K, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Shimamoto A, Tahara H, Ito E, Kojima S, Kurumizaka H, Ogawa S, Takata M, Yabe H, Yabe M. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet, 2015, 96(6): 1001-1007. | [37] | Rickman KA, Lach FP, Abhyankar A, Donovan FX, Sanborn EM, Kennedy JA, Sougnez C, Gabriel SB, Elemento O, Chandrasekharappa SC, Schindler D, Auerbach AD, Smogorzewska A. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi Anemia. Cell Rep, 2015, 12(1): 35-41. | [38] | Park JY, Virts EL, Jankowska A, Wiek C, Othman M, Chakraborty SC, Vance GH, Alkuraya FS, Hanenberg H, Andreassen PR. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet, 2016, 53(10): 672-680. | [39] | Dong HB, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics, 2015, 9(1): 32. | [40] | Pelosi E, Forabosco A, Schlessinger D. Genetics of the ovarian reserve. Front Genet, 2015, 6: 308. | [41] | Zhang DD, Zhang XQ, Zeng M, Yuan JH, Liu MY, Yin Y, Wu XQ, Keefe DL, Liu L. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet, 2015, 32(7): 1069-1078. | [42] | Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev, 2016, 37(6): 609-635. | [43] | Wong JCY, Alon N, Mckerlie C, Huang JR, Meyn MS, Buchwald M. Targeted disruption of exons 1 to 6 of the Fanconi Anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. Hum Mol Genet, 2003, 12(16): 2063-2076. | [44] | Kato Y, Alavattam KG, Sin HS, Meetei AR, Pang QS, Andreassen PR, Namekawa SH. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Hum Mol Genet, 2015, 24(18): 5234-5249. | [45] | Nadler JJ, Braun RE. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis, 2000, 27(3): 117-123. | [46] | Agoulnik AI, Lu BS, Zhu QC, Truong C, Ty MT, Arango N, Chada KK, Bishop CE. A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd. Hum Mol Genet, 2002, 11(24): 3047-3053. | [47] | Fu C, Begum K, Jordan PW, He Y, Overbeek PA. Dearth and delayed maturation of testicular germ cells in Fanconi Anemia E mutant male mice. PLoS One, 2016, 11(8): e0159800. | [48] | Bakker ST, van de Vrugt HJ, Visser JA, Delzenne-Goette E, van der Wal A, Berns MAD, van de Ven M, Oostra AB, de Vries S, Kramer P, Arwert F, van der Valk M, de Winter JP, te Riele H. Fancf-deficient mice are prone to develop ovarian tumours. J Pathol, 2012, 226(1): 28-39. | [49] | Koomen M, Cheng NC, van de Vrugt HJ, Godthelp BC, van der Valk MA, Oostra AB, Zdzienicka MZ, Joenje H, Arwert F. Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. Hum Mol Genet, 2002, 11(3): 273-281. | [50] | Kim S, Hwang SK, Lee M, Kwak H, Son K, Yang J, Kim SH, Lee CH. Fanconi anemia complementation group A (FANCA) localizes to centrosomes and functions in the maintenance of centrosome integrity. Int J Biochem Cell Biol, 2013, 45(9): 1953-1961. | [51] | Nakanishi A, Han XZ, Saito H, Taguchi K, Ohta Y, Imajoh-Ohmi S, Miki Y. Interference with BRCA2, which localizes to the centrosome during S and early M phase, leads to abnormal nuclear division. Biochem Biophys Res Commun, 2007, 355(1): 34-40. | [52] | Collis SJ, Ciccia A, Deans AJ, Ho?ej?í Z, Martin JS, Maslen SL, Skehel JM, Elledge SJ, West SC, Boulton SJ. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell, 2008, 32(3): 313-324. | [53] | Valeri A, Alonso-Ferrero ME, Rio P, Pujol MR, Casado JA, Pérez L, Jacome A, Agirre X, Calasanz MJ, Hanenberg H, Surrallés J, Prosper F, Albella B, Bueren JA. Bcr/Abl interferes with the Fanconi anemia/BRCA pathway: implications in the chromosomal instability of chronic myeloid leukemia cells. PLoS One, 2010, 5(12): e15525. | [54] | Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C, Décaillet C, Gari K, Constantinou A. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol Cell, 2013, 51(5): 678-690. | [55] | Chen YH, Jones MJK, Yin YD, Crist SB, Colnaghi L, Sims III RR, Rothenberg E, Jallepalli PV, Huang TT. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol Cell, 2015, 58(2): 323-338. | [56] | Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell, 2012, 22(1): 106-116. | [57] | Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 2011, 145(4): 529-542. | [58] | Blackford AN, Schwab RA, Nieminuszczy J, Deans AJ, West SC, Niedzwiedz W. The DNA translocase activity of FANCM protects stalled replication forks. Hum Mol Genet, 2012, 21(9): 2005-2016. | [59] | Raghunandan M, Chaudhury I, Kelich SL, Hanenberg H, Sobeck A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle, 2015, 14(3): 342-353. | [60] | Hashimoto Y, Puddu F, Costanzo V. RAD51- and MRE11- dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol, 2011, 19(1): 17-24. | [61] | Hou Y, Fan W, Yan LY, Li R, Lian Y, Huang J, Li JS, Xu LY, Tang FC, Xie XS, Qiao J. Genome analyses of single human oocytes. Cell, 2013, 155(7): 1492-1506. | [62] | Knoll A, Higgins JD, Seeliger K, Reha SJ, Dangel NJ, Bauknecht M, Schr?pfer S, Franklin FCH, Puchta H. The Fanconi anemia ortholog FANCM ensures ordered homologous recombination in both somatic and meiotic cells in Arabidopsis. Plant Cell, 2012, 24(4): 1448-1464. | [63] | Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, Mercier R. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res, 2014, 42(14): 9087-9095. | [64] | Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, De Jaeger G, Chelysheva L, Mercier R. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM. Proc Natl Acad Sci USA, 2015, 112(15): 4713-4718. | [65] | Kuo HK, McMahan S, Rota CM, Kohl KP, Sekelsky J. Drosophila FANCM helicase prevents spontaneous mitotic crossovers generated by the MUS81 and SLX1 nucleases. Genetics, 2014, 198(3): 935-945. | [66] | Sun XF, Brie?o-Enríquez MA, Cornelius A, Modzelewski AJ, Maley TT, Campbell-Peterson KM, Holloway JK, Cohen PE. FancJ (Brip1) loss-of-function allele results in spermatogonial cell depletion during embryogenesis and altered processing of crossover sites during meiotic prophase I in mice. Chromosoma, 2016, 125(2): 237-252. | [67] | Rodríguez-Marí A, Wilson C, Titus TA, Ca?estro C, BreMiller RA, Yan YL, Nanda I, Johnston A, Kanki JP, Gray EM, He XJ, Spitsbergen J, Schindler D, Postlethwait JH. Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS Genet, 2011, 7(3): e1001357. | [68] | Rodríguez-Marí A, Postlethwait JH. The role of Fanconi anemia/BRCA genes in zebrafish sex determination. Methods Cell Biol, 2011, 105: 461-490. | [69] | Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, Ward JD, Martinez-Perez E, Boulton SJ, La Volpe A. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell, 2010, 39(1): 25-35. | [70] | Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science, 2010, 329(5988): 219-223. | [71] | Bunting SF, Nussenzweig A. Dangerous liaisons: Fanconi anemia and toxic nonhomologous end joining in DNA crosslink repair. Mol Cell, 2010, 39(2): 164-166. | [72] | Larder R, Karali D, Nelson N, Brown P. Fanconi anemia A is a nucleocytoplasmic shuttling molecule required for gonadotropin-releasing hormone(GnRH)transduction of the GnRH receptor. Endocrinology, 2006, 147(12): 5676-5689. | [73] | Larder R, Chang L, Clinton M, Brown P. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells. Biol Reprod, 2004, 71(3): 828-836. | [74] | Pyun JA, Kim S, Cha DH, Kwack K. Polymorphisms within the FANCA gene associate with premature ovarian failure in Korean women. Menopause, 2014, 21(5): 530-533. | [75] | Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models. Theriogenology, 2016, 86(1): 41-53. | [76] | Pitman JL, McNeilly AS, McNeilly JR, Hays LE, Bagby GC Jr, Sawyer HR, McNatty KP. The fate of granulosa cells following premature oocyte loss and the development of ovarian cancers. Int J Dev Biol, 2012, 56(10-12): 949-958. | [77] | Adelman CA, Lolo RL, Birkbak NJ, Murina O, Matsuzaki K, Horejsi Z, Parmar K, Borel V, Skehel JM, Stamp G, D'Andrea A, Sartori AA, Swanton C, Boulton SJ. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature, 2013, 502(7471): 381-384. | [78] | Luebben SW, Kawabata T, Akre MK, Lee WL, Johnson CS, O'Sullivan MG, Shima N. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res, 2013, 41(22): 10283-10297. | [79] | Takata KI, Reh S, Tomida J, Person MD, Wood RD. Human DNA helicase HELQ participates in DNA interstrand crosslink tolerance with ATR and RAD51 paralogs. Nat Commun, 2013, 4: 2338. | [80] | Stolk L, Perry JRB, Chasman DI, He CY, Mangino M, Sulem P, Barbalic M, Broer L, Byrne EM, Ernst F, Esko T, Franceschini N, Gudbjartsson DF, Hottenga JJ, Kraft P, McArdle PF, Porcu E, Shin SY, Smith AV, van Wingerden S, Zhai GJ, Zhuang WV, Albrecht E, Alizadeh BZ, Aspelund T, Bandinelli S, Lauc LB, Beckmann JS, Boban M, Boerwinkle E, Broekmans FJ, Burri A, Campbell H, Chanock SJ, Chen C, Cornelis MC, Corre T, Coviello AD, d'Adamo P, Davies G, de Faire U, de Geus EJC, Deary IJ, Dedoussis GVZ, Deloukas P, Ebrahim S, Eiriksdottir G, Emilsson V, Eriksson JG, Fauser BCJM, Ferreli L, Ferrucci L, Fischer K, Folsom AR, Garcia ME, Gasparini P, Gieger C, Glazer N, Grobbee DE, Hall P, Haller T, Hankinson SE, Hass M, Hayward C, Heath AC, Hofman A, Ingelsson E, Janssens ACJW, Johnson AD, Karasik D, Kardia SLR, Keyzer J, Kiel DP, Kolcic I, Kutalik Z, Lahti J, Lai S, Laisk T, Laven JSE, Lawlor DA, Liu JJ, Lopez LM, Louwers YV, Magnusson PKE, Marongiu M, Martin NG, Klaric IM, Masciullo C, McKnight B, Medland SE, Melzer D, Mooser V, Navarro P, Newman AB, Nyholt DR, Onland-Moret NC, Palotie A, Paré G, Parker AN, Pedersen NL, Peeters PHM, Pistis G, Plump AS, Polasek O, Pop VJM, Psaty BM, R?ikk?nen K, Rehnberg E, Rotter JI, Rudan I, Sala C, Salumets A, Scuteri A, Singleton A, Smith JA, Snieder H, Soranzo N, Stacey SN, Starr JM, Stathopoulou MG, Stirrups K, Stolk RP, Styrkarsdottir U, Sun YV, Tenesa A, Thorand B, Toniolo D, Tryggvadottir L, Tsui K, Ulivi S, van Dam RM, van der Schouw YT, van Gils CH, van Nierop P, Vink JM, Visscher PM, Voorhuis M, Waeber G, Wallaschofski H, Wichmann HE, Widen E, Wijnands-van Gent CJM, Willemsen G, Wilson JF, Wolffenbuttel BHR, Wright AF, Yerges-Armstrong LM, Zemunik T, Zgaga L, Zillikens MC, Zygmunt M, The LifeLines Cohort Study, Arnold AM, Boomsma DI, Buring JE, Crisponi L, Demerath EW, Gudnason V, Harris TB, Hu FB, Hunter DJ, Launer LJ, Metspalu A, Montgomery GW, Oostra BA, Ridker PM, Sanna S, Schlessinger D, Spector TD, Stefansson K, Streeten EA, Thorsteinsdottir U, Uda M, Uitterlinden AG, van Duijn CM, V?lzke H, Murray A, Murabito JM, Visser JA, Lunetta KL. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet, 2012, 44(3): 260-268. | [81] | Naim V, Rosselli F. The FANC pathway and mitosis: a replication legacy. Cell Cycle, 2009, 8(18): 2907-2911. | [82] | Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol, 1986, 67(4): 604-606. | [83] | American College of Obstetricians and Gynecologists(ACOG). Ovarian reserve testing. Am Coll Obstet Gynecol, 2015, 125(618): 268-273. | [84] | Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 2016, 539(7628): 299-303. |
|