[1] | You ZS , Shi LZ , Zhu Q , Wu P , Zhang YW , Basilio A , Tonnu N , Verma IM , Berns MW , Hunter T. CtIP links DNA double-strand break sensing to resection. Mol Cell, 2009, 36( 6): 954- 969. | [2] | Frit P , Barboule N , Yuan Y , Gomez D , Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair, 2014, 17: 81- 97. | [3] | Valerie K , Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 2003, 22( 37): 5792- 5812. | [4] | Alshareeda AT , Negm OH , Albarakati N , Green AR , Nolan C , Sultana R , Madhusudan S , Benhasouna A , Tighe P , Ellis IO , Rakha EA. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat, 2013, 139( 2): 301- 310. | [5] | Britton S , Coates J , Jackson SP. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol, 2013, 202( 3): 579- 595. | [6] | Gottlieb TM , Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 1993, 72( 1): 131- 142. | [7] | Ma YM , Pannicke U , Schwarz K , Lieber MR. Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell, 2002, 108( 6): 781- 794. | [8] | Burma S , Chen BPC , Chen DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair, 2006, 5( 9-10): 1042- 1048. | [9] | Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010, 79( 1): 181- 211. | [10] | Wu PY , Frit P , Meesala S , Dauvillier S , Modesti M , Andres SN , Huang Y , Sekiguchi J , Calsou P , Salles B , Junop MS. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Mol Cell Mol Biol, 2009, 29( 11): 3163- 3172. | [11] | Hammel M , Rey M , Yu YP , Mani RS , Classen S , Liu MN , Pique ME , Fang SJ , Mahaney BL , Weinfeld M , Schriemer DC , Lees-Miller SP , Tainer JA. XRCC4 protein interactions XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 2011, 286( 37): 32638- 32650. | [12] | Williams RS , Dodson GE , Limbo O , Yamada Y , Williams JS , Guenther G , Classen S , Glover JNM , Iwasaki H , Russell P , Tainer JA. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell, 2009, 139( 1): 87- 99. | [13] | Cruz-García A , López-Saavedra A , Huertas P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep, 2014, 9( 2): 451- 459. | [14] | Chen LC , Nievera CJ , Lee AYL , Wu XH. Cell cycle- dependent complex formation of BRCA1 CtIP MRN is important for DNA double-strand break repair. J Biol Chem, 2008, 283( 12): 7713- 7720. | [15] | Lee SE , Moore JK , Holmes A , Umezu K , Kolodner RD , Haber JE. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell, 1998, 94( 3): 399- 409. | [16] | Galanty Y , Belotserkovskaya R , Coates J , Jackson SP. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev, 2012, 261( 11): 1179- 1195. | [17] | West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Bol, 2003, 4( 6): 435- 445. | [18] | Meyer M , De Angelis MH , Wurst W , Kühn R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA, 2010, 107( 34): 15022- 15026. | [19] | Heyer WD , Ehmsen KT , Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet, 2010, 44( 1): 113- 139. | [20] | Bollag RJ , Watdman AS , Liskay RM. Homologous recombination in mammalian cells. Annu Rev Genet, 1989, 23( 1): 199- 225. | [21] | Taghian DG , Nickoloff JA. Chromosomal double- strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol, 1997, 17( 11): 6386- 6393. | [22] | Rouet P , Smih F , Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA, 1994, 91( 13): 6064- 6068. | [23] | Gaj T , Gersbach CA , Barbas CF CF . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31( 7): 397- 405. | [24] | Hartenian E , Doench JG. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J, 2015, 282( 8): 1383- 1393. | [25] | Vanamee éS , Santagata S , Aggarwal AK. FokI requires two specific DNA sites for cleavage. J Mol Biol, 2001, 309( 1): 69- 78. | [26] | Moscou MJ , Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326( 5959): 1501. | [27] | Boch J , Scholze H , Schornack S , Landgraf A , Hahn S , Kay S , Lahaye T , Nickstadt A , Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326( 5959): 1509- 1512. | [28] | Christian M , Cermak T , Doyle EL , Schmidt C , Zhang F , Hummel A , Bogdanove AJ , Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186( 2): 757- 761. | [29] | Jinek M , Chylinski K , Fonfara I , Hauer M , Doudna JA , Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337( 6096): 816- 821. | [30] | Gao F , Shen XZ , Jiang F , Wu YQ , Han CY. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol, 2016, 34( 7): 768- 773. | [31] | Xu S , Cao SS , Zou BJ , Yue YY , Gu C , Chen X , Wang P , Dong XH , Xiang Z , Li K , Zhu MS , Zhao QS , Zhou GH. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease. Genome Biol, 2016, 17( 1): 186. | [32] | Bibikova M , Beumer K , Trautman JK , Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300( 5620): 764. | [33] | Bibikova M , Carroll D , Segal DJ , Trautman JK , Smith J , Kim YG , Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Mol Biol, 2001, 21( 1): 289- 297. | [34] | Porteus MH , Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science, 2003, 300( 5620): 763. | [35] | Hockemeyer D , Wang HY , Kiani S , Lai CS , Gao Q , Cassady JP , Cost GJ , Zhang L , Santiago Y , Miller JC , Zeitler B , Cherone JM , Meng XD , Hinkley SJ , Rebar EJ , Gregory PD , Urnov FD , Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011, 29( 8): 731- 734. | [36] | Huang P , Xiao A , Zhou MG , Zhu ZY , Lin S , Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29( 8): 699- 700. | [37] | Carlson DF , Tan WF , Lillico SG , Stverakova D , Proudfoot C , Christian M , Voytas DF , Long CR , Whitelaw CB , Fahrenkrug SC. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA, 2012, 109( 43): 17382- 17387. | [38] | Li XP , Yang Y , Bu L , Guo XG , Tang CC , Song J , Fan NN , Zhao BT , Ouyang Z , Liu ZM , Zhao Y , Yi XL , Quan LQ , Liu SC , Yang ZG , Ouyang HS , Chen YE , Wang Z , Lai LX. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res, 2014, 21( 4): 501- 504. | [39] | Yang H , Wang HY , Shivalila CS , Cheng AW , Shi LY , Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154( 6): 1370- 1379. | [40] | Platt RJ , Chen SD , Zhou Y , Yim MJ , Swiech L , Kempton HR , Dahlman JE , Parnas O , Eisenhaure TM , Jovanovic M , Graham DB , Jhunjhunwala S , Heidenreich M , Xavier RJ , Langer R , Anderson DG , Hacohen N , Regev A , Feng GP , Sharp PA , Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014, 159( 2): 440- 455. | [41] | Richardson CD , Ray GJ , DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol, 2016, 34( 3): 339- 344. | [42] | Maruyama T , Dougan SK , Truttmann MC , Bilate AM , Ingram JR , Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015, 33( 5): 543- 548. | [43] | Orr-Weaver TL , Szostak JW , Rothstein RJ. Yeast transformation: A model system for the study of recombination. Proc Natl Acad Sci USA, 1981, 78( 10): 6354- 6358. | [44] | Orlando SJ , Santiago Y , DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res, 2010, 38( 15): e152. | [45] | Cristea S , Freyvert Y , Santiago Y , Holmes MC , Urnov FD , Gregory PD , Cost GJ. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng, 2013, 110( 3): 871- 880. | [46] | Bachu R , Bergareche I , Chasin LA. CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining. Biotechnol Bioeng, 2015, 112( 10): 2154- 2162. | [47] | Lee JS , Kallehauge TB , Pedersen LE , Kildegaard HF. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep, 2015, 5: 8572. | [48] | Lombardo A , Genovese P , Beausejour CM , Colleoni S , Lee YL , Kim KA , Ando D , Urnov FD , Galli C , Gregory PD , Holmes MC , Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol, 2007, 25( 11): 1298- 1306. | [49] | Yao YC , Nashun B , Zhou TC , Qin L , Qin LM , Zhao ST , Xu JY , Esteban MA , Chen XP. Generation of CD34 + cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther, 2012, 23( 2): 238- 242. | [50] | Cui XX , Ji DN , Fisher DA , Wu YM , Briner DM , Weinstein EJ. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol, 2010, 29( 1): 64- 67. | [51] | Moore JK , Haber JE. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol, 1996, 16( 5): 2164- 2173. | [52] | Kadyk LC , Hartwell LH. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics, 1992, 132( 2): 387- 402. | [53] | Saintigny Y , Delac?te F , Boucher D , Averbeck D , Lopez BS. XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells. Oncogene, 2007, 26( 19): 2769- 2780. | [54] | Yang DN , Scavuzzo MA , Chmielowiec J , Sharp R , Bajic A , Borowiak M. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep, 2016, 6: 21264. | [55] | Lin S , Staahl BT , Alla RK , Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, 2014, 3: e04766. | [56] | Urnov FD , Miller JC , Lee YL , Beausejour CM , Rock JM , Augustus S , Jamieson AC , Porteus MH , Gregory PD , Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nat, 2005, 435( 7042): 646- 651. | [57] | Bunting SF , Nussenzweig A. End-joining, translocations and cancer. Nat Rev Cancer, 2013, 13( 7): 443- 454. | [58] | Ha TK , Kim YG , Lee GM. Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Appl Microbiol Biot, 2014, 98( 22): 9239- 9248. | [59] | De León VP , Mérillat AM , Tesson L , Anegón I , Hummler E. Generation of TALEN-mediated GR dim knock-in rats by homologous recombination. PLoS One, 2014, 9( 2): e88146. | [60] | Shin J , Chen JK , Solnica-Krezel L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development, 2014, 141( 19): 3807- 3818. | [61] | Hasty P , Rivera-Pérez J , Chang C , Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol, 1991, 11( 9): 4509- 4517. | [62] | Dai X , Xue H , Yang H , Hu YP , Fu JL , Chen Z. Targeted disruption of coagulation factor IX gene in mouse embryonic stem cells. Acad J Sec Mil Med Univ, 1998( 1): 1- 4. | [62] | 戴旭明, 薛红, 杨桦, 胡以平, 傅继梁, 陈竺. 小鼠胚胎干细胞凝血因子Ⅸ基因的定向敲除. 第二军医大学学报, 1998( 1): 1- 4. | [63] | Fujitani Y , Yamamoto K , Kobayashi I. Dependence of frequency of homologous recombination on the homology length. Genetics, 1995, 140( 2): 797- 809. | [64] | Thomas KR , Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51( 3): 503- 512. | [65] | Orlando SJ , Santiago Y , DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res, 2010, 38( 15): e152. | [66] | Byrne SM , Ortiz L , Mali P , Aach J , Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res, 2015, 43( 3): e21. | [67] | Tasic B , Hippenmeyer S , Wang C , Gamboa M , Zong H , Chen-Tsai Y , Luo LQ. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA, 2011, 108( 19): 7902- 7907. | [68] | Zhu F , Gamboa M , Farruggio AP , Hippenmeyer S , Tasic B , Schüle B , Chen-Tsai Y , Calos MP. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res, 2014, 42( 5): e34. | [69] | Yan W , Smith C , Cheng LZ. Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Sci Rep, 2013, 3: 2376. | [70] | Lin ZY , Zhang YL , Gao TY , Wang LD , Zhang Q , Zhou J , Zhao J. Homologous recombination efficiency enhanced by inhibition of MEK and GSK3β. Genetics, 2014, 52( 11): 889- 896. | [71] | Frohman MA , Martin GR. Cut, paste, and save: new approaches to altering specific genes in mice. Cell, 1989, 56( 2): 145- 147. | [72] | Kobayashi T , Hisajima S , Stougaard J , Ichikawa H. A conditional negative selection for Arabidopsis expressing a bacterial cytosine deaminase gene. Jpn J Genet, 1995, 70( 3): 409- 422. | [73] | Johnson RD , Liu N , Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature, 1999, 401( 6751): 397- 399. | [74] | Sonoda E , Takata M , Yamashita YM , Morrison C , Takeda S. Homologous DNA recombination in vertebrate cells. Proc Natl Acad Sci USA, 2001, 98( 15): 8388- 8394. | [75] | Neelsen KJ , Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol, 2015, 16( 4): 207- 220. | [76] | Saugar I , Ortiz-Bazán Má , Tercero JA. Tolerating DNA damage during eukaryotic chromosome replication. Exp Cell Res, 2014, 329( 1): 170- 177. | [77] | Johnson RD , Jasin M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J, 2000, 19( 13): 3398- 3407. | [78] | Sidhu YS , Cairns TC , Chaudhari YK , Usher J , Talbot NJ , Studholme DJ , Csukai M , Haynes K. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici. Fungal Genet Biol, 2015, 79: 102- 109. | [79] | Ma SY , Chang JS , Wang XG , Liu YY , Zhang JD , Lu W , Gao J , Shi R , Zhao P , Xia QY. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep, 2014, 4: 4489. | [80] | Adachi N , Ishino T , Ishii Y , Takeda S , Koyama H. DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: implications for DNA double-strand break repair. Proc Natl Acad Sci USA, 2001, 98( 21): 12109- 12113. | [81] | Frank KM , Sekiguchi JM , Seidl KJ , Swat W , Rathbun GA , Cheng HL , Davidson L , Kangaloo L , Alt FW. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature, 1998, 396( 6707): 173- 177. | [82] | Blais V , Gao H , Elwell CA , Boddy MN , Gaillard PHL , Russell P , McGowan CH. RNA interference inhibition of Mus81 reduces mitotic recombination in human cells. Mol Biol Cell, 2004, 15( 2): 552- 562. | [83] | Setork S , Walker L , Advisor F. Generation of a lentiviral-based RNAi vector to study V(D)J recombination in primary B cells. Chem Commun, 2013, 49( 75): 8281- 8310. | [84] | Panier S , Durocher D. Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol, 2013, 14( 10): 661- 672. | [85] | Chu VT , Weber T , Wefers B , Wurst W , Sander S , Rajewsky K , Kühn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol, 2015, 33( 5): 543- 548. | [86] | Bertolini LR , Bertolini M , Maga EA , Madden KR , Murray JD. Increased gene targeting in Ku70 and xrcc4 transiently deficient human somatic cells. Mol Biotechnol, 2009, 41( 2): 106- 114. | [87] | Wei ZQ , Xiong F , He MD , Wang HP , Zhu ZY , Sun YH. Suppression of Ligase 4 or Xrcc6 activities enhances the DNA homologous recombination efficiency in zebrafish primordial germ cells. Acta Hydrobiol Sin, 2015, 39( 2): 339- 348. | [88] | Chowdhury D , Choi YE , Brault ME. Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol, 2013, 14( 3): 181- 189. | [89] | Wang YM , Taniguchi T. MicroRNAs and DNA damage response: Implications for cancer therapy. Cell Cycle, 2012, 12( 1): 32- 42. | [90] | Jia XQ , Cheng HQ , Qian X , Bian CX , Shi ZM , Zhang JP , Jiang BH , Feng ZQ. Lentivirus-mediated overexpression of microRNA-199a inhibits cell proliferation of human hepatocellular carcinoma. Cell Biochem Biophys, 2012, 62( 1): 237- 244. | [91] | Kota J , Chivukula RR , O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137( 6): 1005- 1017. | [92] | Lynam-Lennon N , Reynolds JV , Marignol L , Sheils OM , Pidgeon GP , Maher SG. MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. J Mol Med, 2012, 90( 12): 1449- 1458. | [93] | Hollick JJ , Golding BT , Hardcastle IR , Martin N , Richardson C , Rigoreau LJ , Smith GC , Griffin RJ. 2, 6-disubstituted pyran-4-one and thiopyran-4-one inhibitors of DNA-dependent protein kinase (DNA-PK). Bioorg Med Chem Lett, 2003, 15( 18): 3083- 3086. | [94] | Rahman SH , Bobis-Wozowicz S , Chatterjee D , Gellhaus K , Pars K , Heilbronn R , Jacobs R , Cathomen T. The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc-finger nuclease-mediated gene targeting. Hum Gene Ther, 2013, 24( 1): 67- 77. | [95] | Srivastava M , Nambiar M , Sharma S , Karki SS , Goldsmith G , Hegde M , Kumar S , Pandey M , Singh RK , Ray P , Natarajan R , Kelkar M , De A , Choudhary B , Raghavan SC. An inhibitor of nonhomologous end- joining abrogates double-strand break repair and impedes cancer progression. Cell, 2012, 151( 17): 1474- 1487. | [96] | Cheng CY , Gilson T , Dallaire F , Ketner G , Branton PE , Blanchette P. The E4orf6/E1B55K E3 ubiquitin ligase complexes of human adenoviruses exhibit heterogeneity in composition and substrate specificity. J Virol, 2011, 85( 2): 765- 775. | [97] | Song J , Yang DS , Xu J , Zhu TQ , Chen YE , Zhang JF. RS-1 enhances CRISPR/Cas9-and TALEN-mediated knock-in efficiency. Nat Commun, 2016, 7: 10548. | [98] | Yu C , Liu YX , Ma TH , Liu K , Xu SH , Zhang Y , Liu HL , La Russa M , Xie M , Ding S , Qi LS. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16( 2): 142- 147. | [99] | Kachhap SK , Rosmus N , Collis SJ , Kortenhorst MSQ , Wissing MD , Hedayati M , Shabbeer S , Mendonca J , Deangelis J , Marchionni L , Lin JQ , H?ti N , Nortier JWR , DeWeese TL, Hammers H, Carducci MA. Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS One, 2010, 6( 5): e11208 | [100] | Adimoolam S , Sirisawad M , Chen J , Thiemann P , Ford JM , Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci USA, 2007, 104( 49): 19482- 19487. | [101] | Mansour SL , Thomas KR , Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature, 1988, 336( 6197): 348- 352. | [102] | Ruan JX , Li HG , Xu K , Wu TW , Wei JL , Zhou R , Liu ZG , Mu YL , Yang SL , Ouyang HS , Chen-Tsai RY , Li K. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep, 2015, 5: 14253. | [103] | Yu GH , Chen JQ , Yu HQ , Liu SG , Chen J , Xu XJ , Sha HY , Zhang XF , Wu GX , Xu SF , Cheng GX. Functional disruption of the prion protein gene in cloned goats. J Gen Virol, 2006, 87( 4): 1019- 1027. | [104] | Charron J , Malynn BA , Robertson EJ , Goff SP , Alt FW. High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol Cell Biol, 1990, 10( 4): 1799- 1804. | [105] | Joyner AL , Skarnes WC , Rossant J. Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature, 1989, 338( 6211): 153- 156. | [106] | Armstrong JJ , Larina IV , Dickinson ME , Zimmer WE , Hirschi KK. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle α-actin gene. Genesis, 2010, 48( 7): 457- 463. | [107] | Viotti M , Nowotschin S , Hadjantonakis AK. Afp:: mCherry, a red fluorescent transgenic reporter of the mouse visceral endoderm. Genesis, 2011, 49( 3): 124- 133. |
|