[1] | You ZS , Shi LZ , Zhu Q , Wu P , Zhang YW , Basilio A , Tonnu N , Verma IM , Berns MW , Hunter T. CtIP links DNA double-strand break sensing to resection. Mol Cell, 2009, 36( 6): 954- 969. | [2] | Frit P , Barboule N , Yuan Y , Gomez D , Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair, 2014, 17: 81- 97. | [3] | Valerie K , Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 2003, 22( 37): 5792- 5812. | [4] | Alshareeda AT , Negm OH , Albarakati N , Green AR , Nolan C , Sultana R , Madhusudan S , Benhasouna A , Tighe P , Ellis IO , Rakha EA. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat, 2013, 139( 2): 301- 310. | [5] | Britton S , Coates J , Jackson SP. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol, 2013, 202( 3): 579- 595. | [6] | Gottlieb TM , Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 1993, 72( 1): 131- 142. | [7] | Ma YM , Pannicke U , Schwarz K , Lieber MR. Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell, 2002, 108( 6): 781- 794. | [8] | Burma S , Chen BPC , Chen DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair, 2006, 5( 9-10): 1042- 1048. | [9] | Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010, 79( 1): 181- 211. | [10] | Wu PY , Frit P , Meesala S , Dauvillier S , Modesti M , Andres SN , Huang Y , Sekiguchi J , Calsou P , Salles B , Junop MS. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Mol Cell Mol Biol, 2009, 29( 11): 3163- 3172. | [11] | Hammel M , Rey M , Yu YP , Mani RS , Classen S , Liu MN , Pique ME , Fang SJ , Mahaney BL , Weinfeld M , Schriemer DC , Lees-Miller SP , Tainer JA. XRCC4 protein interactions XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 2011, 286( 37): 32638- 32650. | [12] | Williams RS , Dodson GE , Limbo O , Yamada Y , Williams JS , Guenther G , Classen S , Glover JNM , Iwasaki H , Russell P , Tainer JA. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell, 2009, 139( 1): 87- 99. | [13] | Cruz-García A , López-Saavedra A , Huertas P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep, 2014, 9( 2): 451- 459. |
[1] |
王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[2] |
刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[3] |
张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[4] |
张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[5] |
刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[6] |
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[7] |
杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[8] |
彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[9] |
王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[10] |
李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[11] |
陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[12] |
刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[13] |
鲍莉雯, 周一叶, 曾凡一. 基于CRISPR/Cas9技术的β-地中海贫血和血友病基因治疗研究进展[J]. 遗传, 2020, 42(10): 949-964. |
[14] |
林珉婷, 赖璐璐, 赵淼, 林必玮, 姚香平. 利用CRISPR/Cas9 AAV系统构建纹状体Slc20a2基因敲除小鼠模型[J]. 遗传, 2020, 42(10): 1017-1027. |
[15] |
刘沛峰, 吴强. CRISPR/Cas9基因编辑在三维基因组研究中的应用[J]. 遗传, 2020, 42(1): 18-31. |
|