[1] | Xia QY, Li S, Feng QL. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annu Rev Entomol, 2014, 59: 513-536. | [2] | Gong YX, Li L, Gong DC, Yin H, Zhang JZ. Biomolecular Evidence of Silk from 8,500 Years Ago. PLoS One, 2016, 11(12): e0168042. | [3] | 张勤, 李绍武. 《遗传》杂志努力推动中国动物遗传育种研究. 遗传, 2012, 34(10): 1221-1222. | [4] | Li B, Lu C, Zhou ZY, Xiang ZH. Progress in constructing of molecular linkage map and molecular markers assisted breeding in silkworm. Hereditas (Beijing), 1999, 21(4): 54-56. | [4] | 李斌, 鲁成, 周泽扬, 向仲怀. 家蚕分子连锁图谱的构建及分子标记育种研究进展. 遗传, 1999, 21(4): 54-56. | [5] | Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J, 2016, 14(1): 169-176. | [6] | Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32(9): 947-951. | [7] | Shan QW, Zhang Y, Chen KL, Zhang K, Gao CX. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J, 2015, 13(6): 791-800. | [8] | Ma SY, Xia QY. Genome editing brings a new era of silkworm research. Science of Sericulture, 2015, 41(2): 195-203. | [8] | 马三垣, 夏庆友. 基因组编辑开启家蚕研究新纪元. 蚕业科学, 2015, 41(2): 195-203. | [9] | Dai FY. Study on the heredity of mutants and near isogenic lines in silkworm, Bombyx mori[Dissertation]. Southwest University, 2008. | [9] | 代方银. 家蚕突变基因的遗传与近等位基因系研究[Dissertation]. 西南大学, 2008. | [10] | 向仲怀. 家蚕遗传育种学. 北京: 中国农业出版社, 1994. | [11] | 陈克平. 家蚕遗传育种回顾与展望. 见: 中国蚕学会面向21世纪蚕业振兴学术讨论会论文集. 2000. | [12] | 徐安英, 林昌麒, 钱荷英, 孙平江, 张月华, 刘明珠, 李龙. 家蚕抗BmNPV新品种简介. 见:第十届家(柞)蚕遗传育种及良种繁育学术研讨会论文集. 2013, 179-180. | [13] | Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H, Biology Analysis Group. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 2004, 306(5703): 1937-1940. | [14] | International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol, 2008, 38(12): 1036-1045. | [15] | Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu S, He N, Zhou Y, Liu H, Zhao J, Ye C, Du Z, Pan G, Zhao A, Shao H, Zeng W, Wu P, Li C, Pan M, Li J, Yin X, Li D, Wang J, Zheng H, Wang W, Zhang X, Li S, Yang H, Lu C, Nielsen R, Zhou Z, Wang J, Xiang Z, Wang J. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 2009, 326(5951): 433-436 | [16] | Tamura T, Thibert C, Royer C, Kanda T, Eappen A, Kamba M, K?moto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol, 2000, 18(1): 81-84. | [17] | Ma L, Xu HF, Zhu JQ, Ma SY, Liu Y, Jiang RJ, Xia QY, Li S. Ras1CA overexpression in the posterior silk gland improves silk yield. Cell Res, 2011, 21(6): 934-943. | [18] | Teule F, Miao YG, Sohn BH, Kim YS, Hull JJ, Fraser MJ Jr, Lewis RV, Jarvis DL. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci USA, 2012, 109(3): 923-928. | [19] | Tan AJ, Fu GL, Jin L, Guo QH, Li ZQ, Niu BL, Meng ZQ, Morrison NI, Alphey L, Huang YP. Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proc Natl Acad Sci USA, 2013, 110(17): 6766-6770. | [20] | Iizuka T, Sezutsu H, Tatematsu K, Kobayashi I, Yonemura N, Uchino K, Nakajima K, Kojima K, Takabayashi C, Machii H, Yamada K, Kurihara H, Asakura T, Nakazawa Y, Miyawaki A, Karasawa S, Kobayashi H, Yamaguchi J, Kuwabara N, Nakamura T, Yoshii K, Tamura T. Transgenics: Colored fluorescent silk made by transgenic silkworms (Adv. Funct. Mater. 42/2013). Adv Funct Mater, 2013, 23(42): 5218. | [21] | Wang X, Zhao P, Li Y, Yi QY, Ma SY, Xie K, Chen HF, Xia QY. Modifying the mechanical properties of silk fiber by genetically disrupting the ionic environment for silk formation. Biomacromolecules, 2015, 16(10): 3119-3125. | [22] | Adachi T, Wang XB, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M. Production of α non-triple helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng, 2010, 106(6): 860-870. | [23] | Wang F, Wang RY, Wang YC, Zhao P, Xia QY. Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Sci Rep, 2015, 5: 16323. | [24] | Kambe Y, Kojima K, Tamada Y, Tomita N, Kameda T. Silk fibroin sponges with cell growth-promoting activity induced by genetically fused basic fibroblast growth factor. J Biomed Mater Res A, 2016, 104(1): 82-93. | [25] | Li Z, Jiang Y, Cao GL, Li JZ, Xue RY, Gong CL. Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol Biol Rep, 2015, 42(1): 19-25. | [26] | Wang SH, Zhang YY, Yang MY, Ye LP, Gong L, Qian QJ, Shuai YJ, You ZY, Chen YY, Zhong BX. Characterization of transgenic silkworm Yielded biomaterials with calcium-binding activity. PLoS One, 2016, 11(7): e0159111. | [27] | Isobe R, Kojima K, Matsuyama T, Quan GX, Kanda T, Tamura T, Sahara K, Asano SI, Bando H. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Arch Virol, 2004, 149(10): 1931-1940. | [28] | Kanginakudru S, Royer C, Edupalli SV, Jalabert A, Mauchamp B, Chandrashekaraiah, Prasad SV, Chavancy G, Couble P, Nagaraju J. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect Mol Biol, 2007, 16(5): 635-644. | [29] | Jiang L, Zhao P, Wang GH, Cheng TC, Yang Q, Jin SK, Lin P, Xiao Y, Sun Q, Xia QY. Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm, Bombyx mori. Antiviral Res, 2013, 97(3): 255-263. | [30] | Jiang L, Wang GH, Cheng TC, Yang Q, Jin SK, Lu G, Wu FQ, Xiao Y, Xu HF, Xia QY. Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Arch Virol, 2012, 157(7): 1323-1328. | [31] | Jiang L, Cheng TC, Zhao P, Yang Q, Wang GH, Jin SK, Lin P, Xiao Y, Xia QY. Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, Bombyx mori. PLoS One, 2012, 7(8): e41838. | [32] | Jin SK, Cheng TC, Jiang L, Lin P, Yang Q, Xiao Y, Kusakabe T, Xia QY. Identification of a new Sprouty protein responsible for the inhibition of the Bombyx mori nucleopolyhedrovirus reproduction. PLoS One, 2014, 9(6): e99200. | [33] | Jiang L, Zhao P, Cheng TC, Sun Q, Peng ZW, Dang YH, Wu XW, Wang GH, Jin SK, Lin P, Xia QY. A transgenic animal with antiviral properties that might inhibit multiple stages of infection. Antiviral Res, 2013, 98(2): 171-173. | [34] | Jiang L, Zhao P, Xia Q. Research progress and prospect of silkworm molecular breeding for disease resistance. Science of Sericulture, 2014, 40(4): 571-575. | [34] | 蒋亮, 赵萍, 夏庆友. 家蚕抗病分子育种研究进展与展望. 蚕业科学, 2014, 40(4): 571-575. | [35] | Subbaiah EV, Royer C, Kanginakudru S, Satyavathi VV, Babu AS, Sivaprasad V, Chavancy G, DaRocha M, Jalabert A, Mauchamp B, Basha I, Couble P, Nagaraju J. Engineering silkworms for resistance to baculovirus through multigene RNA interference. Genetics, 2013, 193(1): 63-75. | [36] | Zhang P, Wang J, Lu Y, Hu Y, Xue R, Gao G, Gong C. Resistance of transgenic silkworm to BmNPV could be improved by silencing ie-1 and lef-1 genes. Gene Ther, 2014, 21(1): 81-88. | [37] | Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol, 2003, 21(1): 52-56. | [38] | Tomita M. Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett, 2011, 33(4): 645-54. | [39] | Wang F, Ma SY, Zhao P, Xia QY. Establishment and applications of transgenic silk gland bioreactor of silkworm, Bombyx mori. Science of Sericulture, 2014, 40(5): 757-763. | [39] | 王峰, 马三垣, 赵萍, 夏庆友. 转基因家蚕丝腺生物反应器体系的建立和应用. 蚕业科学, 2014, 40(5): 757-763. | [40] | Wang F, Xu HF, Yuan L, Ma SY, Wang YC, Duan XL, Duan JP, Xiang ZH, Xia QY. An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms. Transgenic Res, 2013, 22(5): 925-938. | [41] | Ma SY, Shi R, Wang XG, Liu YY, Chang JS, Gao J, Lu W, Zhang JD, Zhao P, Xia QY. Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor. Sci Rep, 2014, 4: 6867. | [42] | Ma SY, Xia XJ, Li YF, Sun L, Liu Y, Liu YY, Wang XG, Shi R, Chang JS, Zhao P, Xia QY. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1. Mol Genet Genomics, 2017, 292(4): 823-831. | [43] | Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K. Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase α-subunits and human collagens in posterior silk glands: production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol, 2006, 126(2): 205-219. | [44] | Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH, Kucharski CA, Fraser MJ Jr, Jarvis DL. Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. Insect Biochem Mol Biol, 2015, 65: 20-27. | [45] | Waltz E. Gene-edited CRISPR mushroom escapes US regulation. Nature, 2016, 532(7599): 293. | [46] | Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol, 2010, 40(10): 759-765. | [47] | Ma SY, Zhang SL, Wang F, Liu Y, Liu YY, Xu HF, Liu C, Lin Y, Zhao P, Xia QY. Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One, 2012, 7: e45035. | [48] | Wang YQ, Li ZQ, Xu J, Zeng BS, Ling L, You L, Chen YZ, Huang YP, Tan AJ. The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res, 2013, 23(12): 1414-1416. | [49] | Ma SY, Chang JS, Wang XG, Liu YY, Zhang JD, Lu W, Gao J, Shi R, Zhao P, Xia QY. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep, 2014, 4: 4489. | [50] | Dong ZQ, Chen TT, Zhang J, Hu N, Cao MY, Dong FF, Jiang YM, Chen P, Lu C, Pan MH. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Res, 2016, 130: 50-57. | [51] | Chen SQ, Hou CX, Bi HL, Wang YQ, Xu J, Li MW, James AA, Huang YP, Tan AJ. Transgenic CRISPR/ Cas9-mediated viral gene targeting for antiviral therapy of Bombyx mori nucleopolyhedrovirus (BmNPV). J Virol, 2017, 91(8): e02465-16. | [52] | Xu J, Wang Y, Li Z, Ling L, Zeng B, James AA, Tan A, Huang Y. Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori. Insect Mol Biol, 2014, 23(6): 800-807. |
|