[1] | Bergh O, Børsheim KY, Bratbak G, Heldal M . High abundance of viruses found in aquatic environments. Nature, 1989,340(6233):467-468. | [2] | Danovaro R , Dell'Anno A, Trucco A, Serresi M, Vanucci S. Determination of virus abundance in marine sediments. Appl Environ Microbiol, 2001,67(3):1384-1387. | [3] | Williamson KE, Radosevich M, Wommack KE . Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol, 2005,71(6):3119-3125. | [4] | Rohwer F . Global phage diversity. Cell, 2003,113(2):141. | [5] | Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF . Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife, 2015,4:e06416. | [6] | Grissa I, Vergnaud G, Pourcel C . The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007,8(1):172. | [7] | Seed KD, Lazinski DW, Calderwood SB, Camilli A . A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 2013,494(7438):489-491. | [8] | Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA , Van Der Oost J, Backofen R, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015,13(11):722-736. | [9] | Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV . Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol, 2017,15(3):169-182. | [10] | Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao YJ, Pirzada ZA, Eckert MR, Vogel, Charpentier E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011,471(7340):602-607. | [11] | Walker FC, Chou-Zheng L, Dunkle JA, Hatoum-Aslan A . Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Nucleic Acids Res, 2017,45(4):2112-2123. | [12] | Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R . CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 2015,520(7548):505-510. | [13] | Wang JY, Li JZ, Zhao HT, Sheng G, Wang M, Yin ML, Wang YL . Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015,163(4):840-853. | [14] | Nuñez JK, Lee ASY, Engelman A, Doudna JA . Integrase- mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature, 2015,519(7542):193-198. | [15] | Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV , Van Der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008,321(5891):960-964. | [16] | Hayes RP, Xiao YB, Ding F, Van Erp PBG, Rajashankar K, Bailey S, Wiedenheft B, Ke AL . Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature, 2016,530(7591):499-503. | [17] | Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, Nogales E, Doudna JA . CasA mediates Cas3- catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci USA, 2014,111(18):6618-6623. | [18] | Vorontsova D, Datsenko KA, Medvedeva S, Bondy- Denomy J, Savitskaya EE, Pougach K, Logacheva M, Wiedenheft B, Davidson AR, Severinov K, Semenova E . Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res, 2015,43(22):10848-10860. | [19] | Haurwitz RE, Jinek M, Wiedenheft B, Zhou KL, Doudna JA . Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science, 2010,329(5997):1355-1358. | [20] | Rollins MF, Chowdhury S, Carter J, Golden SM, Wilkinson RA, Bondy-Denomy J, Lander GC, Wiedenheft B . Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Proc Natl Acad Sci USA, 2017,114(26):E5113-E5121. | [21] | Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA . Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature, 2015,519(7542):199-202. | [22] | Anders C, Niewoehner O, Duerst A, Jinek M . Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014,513(7519):569-573. | [23] | Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas C, Nwokeoji AO, Dickman MJ, Horvath P, Siksnys V . Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell, 2014,56(4):506-517. | [24] | Goldberg GW, Jiang WY, Bikard D, Marraffini LA . Conditional tolerance of temperate phages via transcription- dependent CRISPR-Cas targeting. Nature, 2014,514(7524):633-637. | [25] | Samai P, Pyenson N, Jiang WY, Goldberg GW, Hatoum-Aslan A, Marraffini LA . Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell, 2015,161(5):1164-1174. | [26] | Mojica FJM, Díez-Villaseñor C, García-Martiñez J, Soria E . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005,60(2):174-182. | [27] | Martel B, Moineau S . CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res, 2014,42(14):9504-9513. | [28] | Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71. | [29] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. | [30] | Tao P, Wu XR, Tang WC, Zhu JG, Rao V . Engineering of bacteriophage T4 genome using CRISPR-Cas9. ACS Synth Biol, 2017,6(10):1952-1961. | [31] | Bari SMN, Walker FC, Cater K, Aslan B, Hatoum-Aslan A . Strategies for editing virulent staphylococcal phages using CRISPR-Cas10. ACS Synth Biol, 2017,6(12):2316-2325. | [32] | Marraffini LA, Sontheimer EJ . CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008,322(5909):1843-1845. | [33] | Staals RH, Zhu YF, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, Sakamoto K, Suzuki T, Dohmae N, Yokoyama S, Schaap PJ, Urlaub H, Heck AJR, Nogales E, Doudna JA, Shinkai A , Van Der Oost J. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell, 2014,56(4):518-530. | [34] | Marraffini LA, Sontheimer EJ . Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 2010,463(7280):568-571. | [35] | Hynes AP, Labrie SJ, Moineau S . Programming native CRISPR arrays for the generation of targeted immunity. mBio, 2016,7(3):e00202-16. | [36] | Tamulaitis G, Venclovas Č, Siksnys V . Type Ⅲ CRISPR- Cas immunity: major differences brushed aside. Trends Microbiol, 2017,25(1):49-61. | [37] | Kiro R, Shitrit D, Qimron U . Efficient engineering of a bacteriophage genome using the type Ⅰ-E CRISPR-Cas system. RNA Biol, 2014,11(1):42-44. | [38] | Huo YW, Nam KH, Ding F, Lee H, Wu LJ, Xiao YB, Farchione MD, Jr, Zhou S , Rajashankar K, Kurinov I, Zhang RG, Ke AL. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol, 2014,21(9):771-777. | [39] | Westra ER, Van Erp PB, Künne T, Wong SP, Staals RH, Seegers CLC, Bollen S, Jore MM, Semenova E, Severinov K, De Vos WM, Dame RT, De Vries R, Brouns SJ , Van Der Oost J. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell, 2012,46(5):595-605. | [40] | Box AM , McGuffie MJ, O'Hara BJ, Seed KD. Functional analysis of bacteriophage immunity through a type I-E CRISPR-Cas system in Vibrio cholerae and its application in bacteriophage genome engineering. J Bacteriol, 2015,198(3):578-590. | [41] | Lemay ML, Tremblay DM, Moineau S . Genome engineering of virulent lactococcal phages using CRISPR- Cas9. ACS Synth Biol, 2017,6(7):1351-1358. | [42] | Datta S, Costantino N, Zhou XM, Court DL . Identification and analysis of recombineering functions from Gram- negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci USA, 2008,105(5):1626-1631. | [43] | Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR- Cas systems. Nat Biotechnol, 2013,31(3):233-239. | [44] | Costantino N, Court DL . Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci USA, 2003,100(26):15748-15753. | [45] | Muyrers JPP, Zhang YM, Buchholz F, Stewart AF . RecE/ RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev, 2000,14(15):1971-1982. | [46] | Oppenheim AB, Rattray AJ, Bubunenko M, Thomason LC, Court DL . In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides. Virology, 2004,319(2):185-189. | [47] | Marinelli LJ, Piuri M, Swigoňová Z, Balachandran A, Oldfield LM, Van Kessel JC, Hatfull GF . BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One, 2008,3(12):e3957. | [48] | Van Kessel JC, Marinelli LJ, Hatfull GF . Recombineering mycobacteria and their phages. Nat Rev Microbiol, 2008,6(11):851-857. | [49] | Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS . Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep, 2017,7:44929. | [50] | Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA . Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 2014,32(11):1146-1150. | [51] | Van Kessel JC, Hatfull GF . Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol, 2008,67(5):1094-1107. | [52] | Edgar R, Qimron U . The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J Bacteriol, 2010,192(23):6291-6294. | [53] | Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B, Kurokawa K, Maruyama F, Nakagawa I . CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS One, 2011,6(5):e19543. | [54] | Samson JE, Magadán AH, Sabri M, Moineau S . Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol, 2013,11(10):675-687. | [55] | Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR . Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 2013,493(7432):429-432. | [56] | Bondy-Denomy J, Garcia B, Strum S, Du MJ, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR . Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature, 2015,526(7571):136-139. | [57] | Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ , Bondy-Denomy J. Inhibition of CRISPR- Cas9 with bacteriophage proteins. Cell, 2017, 168(1-2): 150- 158. e10. | [58] | Hynes AP, Rousseau GM, Lemay ML, Horvath P, Romero DA, Fremaux C, Moineau S . An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat Microbiol, 2017,2(10):1374-1380. | [59] | Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P . CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007,315(5819):1709-1712. | [60] | Abudayyeh OO, Gootenberg JS, Konermann S, Joung JJ, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV , Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299): aaf5573. | [61] | Meng FM, Zhang CH, Ai YC . Advances of development of phage display systems. Hereditas (Beijing), 2011,33(10):1113-1120. | [61] | 孟繁梅, 张朝辉, 艾云灿 . 噬菌体展示技术系统发展进展. 遗传, 2011,33(10):1113-1120. | [62] | Salmond GPC, Fineran PC . A century of the phage: past, present and future. Nat Rev Microbiol, 2015,13(12):777-786. | [63] | Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK . Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev, 2016,80(3):523-543. |
|