[1] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusion toFokⅠ cleavage domain. Proc Natl Acad Sci USA, 93(3):1156-1160. | [2] | Li T, Huang S, Zhao XF, Wright DA, Carpenter S, Spalding MH, Weeks DP, Bing Y . Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011,39(14):6315-6325. | [3] | Moscou MJ, Bogdanove AJ . A simple cipher governs DNA recognition by TAL effectors . Science, 2009,326(5959):1501-1501. | [4] | Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | [5] | Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR- Cas systems. Nat Biotechnol, 2013,31(3):233-239. | [6] | Garneau JE, Dupuis Mè, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71. | [7] | Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNaseⅢ. Nature, 2011,471(7340):602-607. | [8] | Jackson SP . Sensing and repairing DNA double-strand breaks. Carcinogenesis, 2002,23(5):687-696. | [9] | Mali P, Yang LH, Esvelt KM, Aach J, Guell M , DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826. | [10] | Jinek M, East A, Cheng A, Lin S, Ma EB, Doudna J . RNA-programmed genome editing in human cells. eLife, 2013,2:e00471. | [11] | Ren XJ, Sun J, Housden BE, Hu YH, Roesel C, Lin SL, Liu LP, Yang ZH, Mao DC, Sun LZ, Wu QJ, Ji JY, Xi JZ, Mohr SE, Xu J, Perrimon N, Ni JQ . Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA, 2013,110(47):19012-19017. | [12] | Bassett A, Liu JL . CRISPR/Cas9 mediated genome engineering in Drosophila. Methods, 2014,69(2):128-136. | [13] | Yu ZS, Ren MD, Wang ZX, Zhang B, Rong YS, Jiao RJ, Gao GJ . Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics, 2013,195(1):289-291. | [14] | Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J , O'Connor-Giles KM. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013,194(4):1029-1035. | [15] | Kondo S, Ueda R . Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics, 2013,195(3):715-721. | [16] | Zuo EW, Cai YJ, Li K, Wei Y, Wang BA, Sun YD, Liu Z, Liu JW, Hu XD, Wei W, Huo XN, Shi LY, Tang C, Liang D, Wang Y, Nie YH, Zhang CC, Yao X, Wang X, Zhou CY, Ying WQ, Wang QF, Chen RC, Shen Q, Xu GL, Li JS, Sun Q, Xiong ZQ, Yang H . One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res, 2017,27(7):933-945. | [17] | Hashimoto M, Yamashita Y, Takemoto T . Electroporationof Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev Biol, 2016,418(1):1-9. | [18] | Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J , O'Connor-Giles KM. CRISPR-Cas9 genome editing in Drosophila. Curr Protoc Mol Biol, 2015,41:7-19. | [19] | Port F, Bullock SL. Creating heritable mutations in Drosophila with CRISPR-Cas9. In: Dahmann C, ed. Drosophila. Methods in Molecular Biology. New York, NY: Humana Press, 2016,1478:145-160. | [20] | Ren XJ, Yang ZH, Xu J, Sun J, Mao DC, Hu YH, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ . Enhanced specificity and efficiency of the CRISPR/ Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep, 2014,9(3):1151-1162. | [21] | Sebo ZL, Lee HB, Peng Y, Guo Y . A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly, 2014,8(1):52-57. | [22] | Wang YQ, Li ZQ, Xu J, Zeng BS, Ling L, You L, Chen YZ, Huang YP, Tan AJ . The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res, 2013,23(12):1414-1416. | [23] | Daimon T, Kiuchi T, Takasu Y . Recent progress in genome engineering techniques in the silkworm, Bombyx mori. Dev Growth Differ, 2014,56(1):14-25. | [24] | Liu YY, Ma SY, Wang XG, Chang JS, Gao J, Shi R, Zhang JD, Lu W, Liu Y, Zhao P, Xia QY . Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem Mol Biol, 2014,49:35-42. | [25] | Ma S, Chang J, Wang X, Liu Y, Zhang J, Lu W, Gao J, Shi R, Zhao P, Xia Q . CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep, 2014,4:4489. | [26] | Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan T . A CRISPR- Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol, 2016,34(1):78-83. | [27] | Kumar A, Lualdi M, Lyozin GT, Sharma P, Loncarek J, Fu XY, Kuehn MR . Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive DVE/AVE migration. Dev Biol, 2015,400(1):1-9. | [28] | Okamoto KW, Robert MA, Gould F, Lloyd AL . Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive. PLoS Negl Trop Dis, 2014,8(7):e2827. | [29] | Li XY, Fan DD, Zhang W, Liu GC, Zhang L, Zhao L, Fang XD, Chen L, Dong Y, Chen Y, Ding Y, Zhao RP, Feng MJ, Zhu YB, Feng Y, Jiang XT, Zhu DY, Xiang H, Feng XK, Li SC, Wang J, Zhang GJ, Kronforst MR, Wang W . Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat Communicat, 2015,6:8212. | [30] | Markert MJ, Zhang Y, Enuameh MS, Reppert SM, Wolfe SA, Merlin C . Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3(Bethesda), 2016,6(4):905-915. | [31] | Zhang LL, Reed RD . Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns. Nat Communicat, 2016,7:11769. | [32] | Zeng BS, Zhan S, Wang YQ, Huang YP, Xu J, Liu Q, Li ZQ, Huang YP, Tan J . Expansion of CRISPR targeting sites in Bombyx mori. Insect Biochem Mol Biol, 2016,72:31-40. | [33] | Ma SY, Liu Y, Liu YY, Chang JS, Zhang T, Wang XG, Shi R, Lu W, Xia XJ, Zhao P, Xia QY . An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites. Insect Biochem Mol Biol, 2017,83:13-20. | [34] | Chen SQ, Hou CX, Bi HL, Wang YQ, Xu J, Li MW, James AA, Huang YP, Tan AJ . Transgenic clustered regularly interspaced short palindromic repeat/Cas9-mediated viral gene targeting for antiviral therapy of bombyx mori nucleopolyhedrovirus. J Virol, 2017,91(8):e02465-16. | [35] | Dong SZ, Lin JY, Held NL, Clem RJ, Passarelli AL, Franz AWE, Tang YP . e-title>Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. Plos One, 2015,10(3):e0122353. | [36] | Kistler KE, Vosshall LB, Matthews BJ . Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Reports, 2015,11(1):51-60. | [37] | Hall AB, Basu S, Jiang XF, Qi YM, Timoshevskiy VA, Biedler JK, Sharakhova MV, Elahi R, Anderson MA, Chen XG, Sharakhov Ⅳ, Adelman ZN, Tu Z . A male-determining factor in the mosquito Aedes aegypti. Science, 2015,348(6240):1268-1270. | [38] | Bassett AR, Tibbit C, Ponting CP, Liu JL . Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep, 2013,4(1):220-228. | [39] | Gokcezade J, Sienski G, Duchek P . Efficient CRISPR/ Cas9 plasmids for rapid and versatile genome editing in Drosophila. G3(Bethesda), 2014,4(11):2279-2282. | [40] | Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM , O'Connor-Giles KM. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair inDrosophila. Genetics, 2014,196(4):961-971. | [41] | Lin SL, Ewen-Campen B, Ni XC, Housden BE, Perrimon N . In Vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics, 2015,201(2):433-442. | [42] | Lee JS, Kwak SJ, Kim J, Kim AK, Noh HM, Kim JS, Yu K . RNA-guided genome editing in Drosophila with the purified Cas9 protein. G3(Bethesda), 2014,4(7):1291-1295. | [43] | Ren XJ, Yang ZH, Mao DC, Chang Z, Qiao HH, Wang X, Sun J, Hu Q, Cui Y, Liu LP, Ji JY, Xu J, Ni JQ . Performance of the Cas9 nickase system in Drosophila melanogaster. G3(Bethesda), 2014,4(10):1955-1962. | [44] | Xue ZY, Ren MD, Wu MH, Dai JB, Rong YS, Gao GJ . Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila. G3(Bethesda), 2014,4(5):925-929. | [45] | Xue ZY, Wu MH, Wen KJ, Ren MD, Long L, Zhang XD, Gao GJ . CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila. G3(Bethesda), 2014,4(11):2167-2173. | [46] | Zimmer CT, Garrood WT, Puinean AM, Eckel-Zimmer M, Williamson MS, Davies TGE, Bass C . A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster. Insect Biochem Mol Biol, 2016,73:62-69. | [47] | Douris V, Papapostolou KM, Ilias A, Roditakis E, Kounadi S, Riga M, Nauen R, Vontas J . Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila. Insect Biochem Mol Biol, 2017,87:127-135. | [48] | Ewen-Campen B, Yang-Zhou D, Fernandes VR, Gonzalez DP, Liu LP, Tao R, Ren X, Sun J, Hu Y, Zirin J, Mohr SE, Ni JQ, Perrimon N . Optimized strategy for in vivo Cas9- activation in Drosophila. Proc Natl Acad Sci USA, 2017,114(35):9409-9414. | [49] | Kane NS, Vora M, Varre KJ, Padgett RW . Efficient screening of CRISPR/Cas9-induced events in Drosophila using a Co-CRISPR strategy. G3(Bethesda), 2017,7(1):87-93. | [50] | Lamb AM, Walker EA, Wittkopp PJ . Tools and strategies for scarless allele replacement in Drosophila using CRISPR/ Cas9. Fly, 2017,11(1):53-64. | [51] | Li F, Scott MJ . CRISPR/Cas9-mediated mutagenesis of the white and sex lethal loci in the invasive pest, Drosophila suzukii. Biochem Biophys Res Commun, 2015,469(4):911-916. | [52] | Zhang Y, Zhao B, Roy S, Saha TT, Kokoza VA, Li M , Raikhel AS. microRNA-309 targets the H omeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti. Proc Natl Acad Sci USA, 2016,113(33):E4828-E4836. | [53] | Basu S, Aryan A, Overcash JM, Samuel GH, Anderson MA, Dahlem TJ, Myles KM, Adelman ZN . Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis inAedes aegypti. Proc Natl Acad Sci USA, 2015,112:4038-4043. | [54] | Dong SZ, Lin JY, Held NL, Clem RJ, Passarelli AL, Franz AWE . Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito,Aedes aegypti. PLoS One, 2015,10(3):e0122353. | [55] | Itokawa K, Komagata O, Kasai S, Ogawa K, Tomita T . Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Sci Rep, 2016,6:24652. | [56] | Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA . Highly efficient Cas9- mediated gene drive for population modification of the malaria vector mosquitoAnopheles stephensi. Proc Natl Acad Sci USA, 2015,112(49):E6736-E6743. | [57] | Wei W, Xin HH, Roy B, Dai JB, Miao YG, Gao GJ . Heritable genome editing with CRISPR/Cas9 in the silkworm,Bombyx mori. PLoS One, 2014,9(7):e101210. | [58] | Perry M, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C . Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature, 2016,535(7611):280-284. | [59] | Huang YP, Chen YZ, Zeng BS, Wang YJ, James AA, Gurr GM, Yang G, Lin XJ, Huang YP, You MS . CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth ( Plutella xylostella). Insect Biochem Mol Biol, 2016,75:98-106. | [60] | Zhu GH, Xu J, Cui Z, Dong XT, Ye ZF, Niu DJ, Huang YP, Dong SL . Functional characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 mediated genome editing. Insect Biochem Mol Biol, 2016,75:1-9. | [61] | Bi HL, Xu J, Tian AJ, Huang YP . CRISPR/Cas9-mediated targeted gene mutagenesis inSpodoptera litura. Insect Sci, 2016,23(3):469-477. | [62] | Jing W, Zhang HN, Wang HD, Shan Z, Zuo YY, Yang YH, Wu YD . Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochem Mol Biol, 2016,76:11-17. | [63] | Ye ZF, Liu XL, Han Q, Liao H, Dong XT, Zhu GH, Dong SL . Functional characterization of PBP1 gene in Helicoverpa armigera( Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system. Sci Rep, 2017,7:8470. | [64] | Wang J, Wang HD, Liu SY, Liu LP, Tay WT, Walsh TK, Yang YH, Wu YD . CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins. Insect Biochem Mol Biol, 2017,87:147-153. | [65] | Chang HT, Liu Y, Ai D, Jiang XC, Dong SL , Wang GR. A Pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Curr Biol, 2017, 27(11): 1610- 1615. e3. | [66] | Khan SA, Reichelt M, Heckel DG . Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations. Sci Rep, 2017,7:40025. | [67] | Koutroumpa FA, Monsempes C, François MC, De Cian A, Royer C, Concordet JP, Jacquin-Joly E . Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep, 2016,6:29620. | [68] | Gilles AF, Schinko JB, Averof M . Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development, 2015,142(16):2832-2839. | [69] | Drury DW, Dapper AL, Siniard DJ, Zentner GE, Wade MJ . CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci Adv, 2017,3(5):e1601910. | [70] | Evans TA . CRISPR-based gene replacement reveals evolutionarily conserved axon guidance functions of Drosophila Robo3 and Tribolium Robo2/3. Evodevo, 2017,8:10. | [71] | Li Y, Zhang J, Chen DF, Yang PC, Jiang F, Wang XH, Kang L . CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochem Mol Biol, 2016,79:27-35. | [72] | Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M . Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep, 2015,5:15885. | [73] | Gao YB, Zhao YD . Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR- mediated genome editing. J Integrat Plant Biol, 2014,56(4):343-349. | [74] | Xu L, Zhao L, Gao Y, Xu J, Han R . Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Res, 2016,45(5):e28. | [75] | Li GL, Zhong GL, Mo JX, Quan R, Wu ZF, Li ZC, Yang HQ, Zhang XW . Advances in site-specific integration of transgene in animal genome. Hereditas (Beijing), 2017,39(2):98-109. | [75] | 李国玲, 钟翠丽, 莫健新, 全绒, 吴珍芳, 李紫聪, 杨化强, 张献伟 . 动物基因组定点整合转基因技术研究进展. 遗传, 2017,39(2):98-109. | [76] | Somers J, Nguyen J, Lumb C, Batterham P, Perry T . In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad. Insect Biochem Mol Biol, 2015,64:116-127. | [77] | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL . Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015,33(5):538-542. | [78] | Mavor LM, Miao H, Zuo ZY, Holly RM, Xie Y, Loerke D, Blankenship JT . Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster. Development, 2016,143(5):892-903. | [79] | Li QY, Scott B, Sumie O, Volkan PC . Examination of endogenous rotund expression and function in developing Drosophila olfactory system using CRISPR-Cas9-mediated protein tagging. G3(Bethesda), 2015,5(12):2809-2816. | [80] | Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA . Repurposing CRISPR as an RNA- guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183. | [81] | Ghosh S, Tibbit C, Liu JL . Effective knockdown of Drosophila long non-coding RNAs by CRISPR interference. Nucleic Acids Res, 2016,44(9):e84. | [82] | Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F . Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015,517(7536):583-588. | [83] | Polstein LR, Gersbach CA . A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol, 2015,11(3):198-200. | [84] | Unckless RL, Messer PW, Connallon T, Clark AG . Modeling the manipulation of natural populations by the mutagenic chain reaction. Genetics, 2015,201(2):425-431. | [85] | Wu B, Luo LQ, Gao XJ . Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat Biotechnol, 2016,34(2):137-138. | [86] | Akbari OS, Bellen HJ, Bier E, Bullock SL, Burt A, Church GM, Cook KR, Duchek P, Edwards OR, Esvelt KM, Gantz VM, Golic KG, Gratz SJ, Harrison MM, Hayes KR, James AA, Kaufman TC, Knoblich J, Malik HS, Matthews KA , O'Connor-Giles KM, Parks AL, Perrimon N, Port F, Russell S, Ueda R, Wildonger J. Safeguarding gene drive experiments in the laboratory. Science, 2015,349(6251):927-929. | [87] | Yan Z, Rajan R, Seifert HS, Mondragón A, Sontheimer EJ . DNase H activity of Neisseria meningitidis Cas9. Molecular Cell, 2015,60(2):242-255. | [88] | Fonfara I, Richter H, BratoviČ M, Le Rhun A, Charpentier E . The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016,532(7600):517-521. |
|