[1] | Dunlap JC, Loros JJ, DeCoursey PJ. Chronobiology: Biological Timekeeping. Sunderland: Sinauer Associates, Inc. Publishers, 2004. | [2] | Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science, 1999, 284(5423): 2177-2181. | [3] | Duffy JF, Wright KP Jr. Entrainment of the human circadian system by light. J Biol Rhythms, 2005, 20(4): 326-338. | [4] | Qin XM, Guo JH. Synchronization of the mammalian central and peripheral circadian clocks. Chin Sci Bull, 2017, 62(25): 2849-2856. | [4] | 秦曦明, 郭金虎. 哺乳动物生物钟同步化的研究进展. 科学通报, 2017, 62(25): 2849-2856. | [5] | Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA, 1998, 95(15): 8660-8664. | [6] | Spoelstra K, Wikelski M, Daan S, Loudon ASI, Hau M. Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci USA, 2016, 113(3): 686-691. | [7] | Takahashi JS Molecular components of the circadian clock in mammals. Diabetes Obes Metab, 2015, 17(Suppl 1): 6-11. | [8] | Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet, 2017, 18(3): 164-179. | [9] | Schibler U, Gotic I, Saini C, Gos P, Curie T, Emmenegger Y, Sinturel F, Gosselin P, Gerber A, Fleury-Olela F, Rando G, Demarque M, Franken P. Clock-Talk: Interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol, 2015, 80: 223-232. | [10] | Buijs RM, Hermes MHLJ, Kalsbeek A. The suprachiasmatic nucleus—paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog Brain Res, 1998, 119: 365-382. | [11] | Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell, 1998, 93(6): 929-937. | [12] | An Y, Xu Y. The mechanism of mammalian circadian rhythms. Chin Bull Life Sci, 2015, 27(11): 1372-1379. | [12] | 安扬, 徐璎. 哺乳动物昼夜节律机制研究进展. 生命科学, 2015, 27(11): 1372-1379. | [13] | Pittendrigh CS. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol, 1960, 25: 159-184. | [14] | Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol, 1960, 25: 11-28. | [15] | Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA, 1971, 68(9): 2112-2116. | [16] | Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell, 1984, 38(3): 701-710. | [17] | Bargiello TA, Jackson FR, Young MW. Restoration of circadian behavioural rhythms by gene transfer in. Drosophila. Nature, 1984, 312(5996): 752-754. | [18] | Sehgal A, Price JL, Man B, Young MW. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science, 1994, 263(5153): 1603-1606. | [19] | Myers MP, Wager-Smith K, Wesley CS, Young MW, Sehgal A. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science, 1995, 270(5237): 805-808. | [20] | Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, Young MW, Weitz CJ. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science , 1995, 270(5237): 811-815. | [21] | Allada R, White NE, So WV, Hall JC, Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell, 1998, 93(5): 791-804. | [22] | Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell, 1998, 93(5): 805-814. | [23] | Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell, 1998, 94(1): 83-95. | [24] | Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 1994, 264(5159): 719-725. | [25] | Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the CLOCK protein in the mammalian circadian mechanism. Science, 1998, 280(5369): 1564-1569. | [26] | Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 2000, 103(7): 1009-1017. | [27] | Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature, 1997, 389(6650): 512-516. | [28] | Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell, 1997, 90(6): 1003-1011. | [29] | Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell, 1997, 91(7): 1055-1064. | [30] | Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron, 1997, 19(6): 1261-1269. | [31] | Takumi T, Taguchi K, Miyake S, Sakakida Y, Takashima N, Matsubara C, Maebayashi Y, Okumura K, Takekida S, Yamamoto S, Yagita K, Yan L, Young MW, Okamura H. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J, 1998, 17(16): 4753-4759. | [32] | van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature, 1999, 398(6728): 627-630. | [33] | Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA, 1999, 96(21): 12114-12119. | [34] | Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science, 2000, 288(5465): 483-491. | [35] | Siepka SM, Yoo SH, Park J, Song WM, Kumar V, Hu YN, Lee C, Takahashi JS. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell, 2007, 129(5): 1011-1023. | [36] | Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama KI, Fukada Y. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell, 2013, 152(5): 1106-1118. | [37] | Shirogane T, Jin JP, Ang XL, Harper JW. SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) proteinm. . J Biol Chem, 2005, 280(29): 26863-26872. | [38] | Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron, 2004, 43(4): 527-537. | [39] | Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 2002, 110(2): 251-260. | [40] | Yamaguchi S, Mitsui S, Yan L, Yagita K, Miyake S, Okamura H. Role of DBP in the circadian oscillatory mechanism. Mol Cell Biol, 2000, 20(13): 4773-4781. | [41] | Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi GI, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi M, Kudo T, Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem, 2003, 278(42): 41519-41527. | [42] | Hardin PE, Hall JC, Rosbash M. Feedback of the. Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature, 1990, 343(6258): 536-540. | [43] | Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 2002, 109(3): 307-320. | [44] | Mosko SS, Moore RY. Neonatal suprachiasmatic nucleus lesions: effects on the development of circadian rhythms in the rat. Brain Res, 1979, 164(1-2): 17-38. | [45] | Kafka MS, Marangos PJ, Moore RY. Suprachiasmatic nucleus ablation abolishes circadian rhythms in rat brain neurotransmitter receptors. Brain Res, 1985, 327(1-2): 344-347. | [46] | Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science, 1990, 247(4945): 975-978. | [47] | Sujino M, Masumoto KH, Yamaguchi S, Van Der Horst GTJ, Okamura H, Inouye SIT. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol, 2003, 13(8): 664-668. | [48] | DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci, 2007, 10(5): 543-545. | [49] | DeBruyne JP, Weaver DR, Reppert SM. Peripheral circadian oscillators require CLOCK. Curr Biol, 2007, 17(14): R538-R539. | [50] | Kondratov RV, Chernov MV, Kondratova AA, Gorbacheva VY, Gudkov AV, Antoch MP. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev, 2003, 17(15): 1921-1932. | [51] | Lee C, Etchegaray JP, Cagampang FRA, Loudon ASI, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 2001, 107(7): 855-867. | [52] | Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng BH, Kume K, Lee CC, Van Der Horst GTJ, Hastings MH, Reppert SM. Interacting molecular loops in the mammalian circadian clock. Science, 2000, 288(5468): 1013-1019. | [53] | Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang XZ, Takahashi JS, Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 2010, 466(7306): 627-631. | [54] | Janich P, Pascual G, Merlos-Suárez A, Batlle E, Ripperger J, Albrecht U, Cheng HYM, Obrietan K, Di Croce L, Benitah SA. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature, 2011, 480(7376): 209-214. | [55] | Nam D, Yechoor VK, Ma K. Molecular clock integration of brown adipose tissue formation and function. Adipocyte, 2015, 5(2): 243-250. | [56] | Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I ?. Mol Cell Biol, 2000, 20(13): 4888-4899. | [57] | Yagita K, Tamanini F, Yasuda M, Hoeijmakers JHJ, Van Der Horst GTJ, Okamura H. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J, 2002, 21(6): 1301-1314. | [58] | Yang Y, Xu TT, Zhang YF, Qin XM. Molecular basis for the regulation of the circadian clock kinases CK1δ and CK1ε. Cell Signal, 2017, 31: 58-65. | [59] | Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P. CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol, 2009, 16(4): 446-448. | [60] | Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science, 2009, 326(5951): 437-440. | [61] | Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. Regulation of BMAL1 protein stability and circadian function by GSK3β-mediated phosphorylation. PLoS One, 2010, 5(1): e8561. | [62] | Yu B, Wu T, Ni YH, Zhou JL, Zhuge F, Sun L, Fu ZW. Posttranscriptional and posttranslational regulation of circadian clock. Chin Bull Life Sci, 2011, 23(5): 470-476. | [62] | 俞波, 吴涛, 倪银华, 周静露, 诸葛芬, 孙璐, 傅正伟. 生物钟的转录后与翻译后水平调控进展. 生命科学, 2011, 23(5): 470-476. | [63] | Kim EY, Jeong EH, Park S, Jeong HJ, Edery I, Cho JW. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev, 2012, 26(5): 490-502. | [64] | Church GM, Ephrussi A, Gilbert W, Tonegawa S. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature, 1985, 313(6005): 798-801. | [65] | Mu?oz E, Brewer M, Baler R. Circadian transcription thinking outside the E-Box. J Biol Chem, 2002, 277(39): 36009-36017. | [66] | Gordan R, Shen N, Dror I, Zhou TY, Horton J, Rohs R, Bulyk ML. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep, 2013, 3(4): 1093-1104. | [67] | Hao H, Allen DL, Hardin PE. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol, 1997, 17(7): 3687-3693. | [68] | Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA, 1998, 95(10): 5474-5479. | [69] | Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol, 2011, 9(2): e1000595. | [70] | Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science, 2012, 338(6105): 349-354. | [71] | Wu YL, Tang DB, Liu N, Xiong W, Huang HW, Li Y, Ma ZX, Zhao HJ, Chen PH, Qi XB, Zhang EE. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab, 2017, 25(1): 73-85. | [72] | Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Weljie AM, Dang CV. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab, 2015, 22(6): 1009-1019. | [73] | Shimomura K, Kumar V, Koike N, Kim TK, Chong J, Buhr ED, Whiteley AR, Low SS, Omura C, Fenner D, Owens JR, Richards M, Yoo SH, Hong HK, Vitaterna MH, Bass J, Pletcher MT, Wiltshire T, Hogenesch J, Lowrey PL, Takahashi JS. Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK: BMAL1 complex in mice. eLife, 2013, 2: e00426. | [74] | Giguère V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan hormone nuclear receptors. Genes Dev, 1994, 8(5): 538-553. | [75] | Giguère V, McBroom LD, Flock G. Determinants of target gene specificity for RORα1: monomeric DNA binding by an orphan nuclear receptor. Mol Cell Biol, 1995, 15(5): 2517-2526. | [76] | Harding HP, Lazar MA. The orphan receptor Rev-ErbAα activates transcription via a novel response element. Mol Cell Biol, 1993, 13(5): 3113-3121. | [77] | Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol, 1994, 14(3): 1544-1552. | [78] | Ueda HR, Chen WB, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S. A transcription factor response element for gene expression during circadian night. Nature, 2002, 418(6897): 534-539. | [79] | Solt LA, Burris TP. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab, 2012, 23(12): 619-627. | [80] | Zhang Y, Luo XY, Wu DH, Xu Y. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol Sin, 2015, 36(1): 71-87. | [81] | Stehlin-Gaon C, Willmann D, Zeyer D, Sanglier S, Van Dorsselaer A, Renaud JP, Moras D, Schüle R. All-trans retinoic acid is a ligand for the orphan nuclear receptor RORβ. Nat Struct Biol, 2003, 10(10): 820-825. | [82] | Gachon F. Physiological function of PARbZip circadian clock-controlled transcription factors. Ann Med, 2007, 39(8): 562-571. | [83] | Fang B, Everett LJ, Jager J, Briggs E, Armour SM, Feng D, Roy A, Gerhart-Hines Z, Sun Z, Lazar MA. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell, 2014, 159(5): 1140-1152. | [84] | Huang ZJ, Edery I, Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature, 1993, 364(6434): 259-262. | [85] | Huang N, Chelliah Y, Shan YL, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS. Crystal structure of the heterodimeric CLOCK: BMAL1 transcriptional activator complex. Science, 2012, 337(6091): 189-194. | [86] | Xu HY, Gustafson CL, Sammons PJ, Khan SK, Parsley NC, Ramanathan C, Lee HW, Liu AC, Partch CL. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nat Struct Mol Biol, 2015, 22(6): 476-484. | [87] | Menet JS, Pescatore S, Rosbash M. CLOCK: BMAL1 is a pioneer-like transcription factor. Genes Dev, 2014, 28(1): 8-13. | [88] | Zhang YX, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, Armour SM, Remsberg JR, Jager J, Soccio RE, Steger DJ, Lazar MA. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science, 2015, 348(6242): 1488-1492. | [89] | Duong HA, Weitz CJ. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol, 2014, 21(2): 126-132. | [90] | Ye R, Selby CP, Ozturk N, Annayev Y, Sancar A. Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem, 2011, 286(29): 25891-25902. | [91] | Kiyohara YB, Tagao S, Tamanini F, Morita A, Sugisawa Y, Yasuda M, Yamanaka I, Ueda HR, Van Der Horst GTJ, Kondo T, Yagita K. The BMAL1 C terminus regulates the circadian transcription feedback loop. Proc Natl Acad Sci USA, 2006, 103(26): 10074-10079. | [92] | Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature, 2002, 419(6909): 841-844. | [93] | Jenuwein T, Allis CD. Translating the histone code. Science, 2001, 293(5532): 1074-1080. | [94] | Soshnev AA, Josefowicz SZ, Allis CD. Greater than the sum of parts: complexity of the dynamic epigenome. Mol Cell, 2016, 62(5): 681-694. | [95] | Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab, 2012, 16(6): 833-845. | [96] | Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet, 2006, 38(3): 369-374. | [97] | Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science, 2011, 331(6022): 1315-1319. | [98] | Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature, 2003, 421(6919): 177-182. | [99] | Lee Y, Lee J, Kwon I, Nakajima Y, Ohmiya Y, Son GH, Lee KH, Kim K. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci, 2010, 123(Pt 20): 3547-3557. | [100] | Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. The NAD +-dependent deacetylase SIRT1 modulates CLOCK- mediated chromatin remodeling and circadian control. . Cell, 2008, 134(2): 329-340. | [101] | Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 2008, 134(2): 317-328. | [102] | Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD + salvage pathway by CLOCK-SIRT1. . Science, 2009, 324(5927): 654-657. | [103] | Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JLC, Buhr ED, Lee C, Takahashi JS, Imai SI, Bass J. Circadian clock feedback cycle through NAMPT-mediated NAD + biosynthesis. . Science, 2009, 324(5927): 651-654. | [104] | Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F, Liechti R, Martin O, Harshman K, Delorenzi M, Desvergne B, Herr W, Deplancke B, Schibler U, Rougemont J, Guex N, Hernandez N, Naef F, CycliX Consortium. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol, 2012, 10(11): e1001442. | [105] | Malapeira J, Khaitova LC, Mas P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci USA, 2012, 109(52): 21540-21545. | [106] | Valekunja UK, Edgar RS, Oklejewicz M, Van Der Horst GTJ, O'Neill JS, Tamanini F, Turner DJ, Reddy AB. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci USA, 2013, 110(4): 1554-1559. | [107] | Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol, 2010, 17(12): 1414-1421. | [108] | Kim DH, Rhee JC, Yeo S, Shen RK, Lee SK, Lee JW, Lee S. Crucial roles of mixed-lineage leukemia 3 and 4 as epigenetic switches of the hepatic circadian clock controlling bile acid homeostasis in mice. Hepatology, 2015, 61(3): 1012-1023. | [109] | DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, Panda S. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science, 2011, 333(6051): 1881-1885. | [110] | Nam HJ, Boo K, Kim D, Han DH, Choe HK, Kim CR, Sun W, Kim H, Kim K, Lee H, Metzger E, Schuele R, Yoo SH, Takahashi JS, Cho S, Son GH, Baek SH. Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting. Mol Cell, 2014, 53(5): 791-805. | [111] | Tamayo AG, Duong HA, Robles MS, Mann M, Weitz CJ. Histone monoubiquitination by Clock-BMAL1 complex marks Per1 and Per2 genes for circadian feedback. Nat Struct Mol Biol, 2015, 22(10): 759-766. | [112] | Kim JY, Kwak PB, Weitz CJ. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol Cell, 2014, 56(6): 738-748. | [113] | Etchegaray JP, Yang XM, DeBruyne JP, Peters AHFM, Weaver DR, Jenuwein T, Reppert SM. The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem, 2006, 281(30): 21209-21215. | [114] | Nguyen KD, Fentress SJ, Qiu YF, Yun KR, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science , 2013, 341(6153): 1483-1488. | [115] | Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410(6824): 120-124. | [116] | Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 2001, 410(6824): 116-120. | [117] | Maekawa F, Shimba S, Takumi S, Sano T, Suzuki T, Bao JH, Ohwada M, Ehara T, Ogawa Y, Nohara K. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics, 2012, 7(9): 1046-1056. | [118] | Xia L, Ma SH, Zhang Y, Wang T, Zhou MY, Wang ZQ, Zhang JF. Daily variation in global and local DNA methylation in mouse livers. PLoS One, 2015, 10(2): e0118101. | [119] | Hu SH, Wan J, Su YJ, Song QF, Zeng YX, Nguyen HN, Shin J, Cox E, Rho HS, Woodard C, Xia SL, Liu S, Lyu HB, Ming GL, Wade H, Song HJ, Qian J, Zhu H. DNA methylation presents distinct binding sites for human transcription factors. eLife, 2013, 2: e00726. | [120] | Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 2005, 308(5720): 414-415. |
|