[1] | Dunlap JC, Loros JJ, DeCoursey PJ. Chronobiology: Biological Timekeeping. Sunderland: Sinauer Associates, Inc. Publishers, 2004. | [2] | Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science, 1999, 284(5423): 2177-2181. | [3] | Duffy JF, Wright KP Jr. Entrainment of the human circadian system by light. J Biol Rhythms, 2005, 20(4): 326-338. | [4] | Qin XM, Guo JH. Synchronization of the mammalian central and peripheral circadian clocks. Chin Sci Bull, 2017, 62(25): 2849-2856. | [4] | 秦曦明, 郭金虎. 哺乳动物生物钟同步化的研究进展. 科学通报, 2017, 62(25): 2849-2856. | [5] | Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA, 1998, 95(15): 8660-8664. | [6] | Spoelstra K, Wikelski M, Daan S, Loudon ASI, Hau M. Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci USA, 2016, 113(3): 686-691. | [7] | Takahashi JS Molecular components of the circadian clock in mammals. Diabetes Obes Metab, 2015, 17(Suppl 1): 6-11. | [8] | Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet, 2017, 18(3): 164-179. | [9] | Schibler U, Gotic I, Saini C, Gos P, Curie T, Emmenegger Y, Sinturel F, Gosselin P, Gerber A, Fleury-Olela F, Rando G, Demarque M, Franken P. Clock-Talk: Interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol, 2015, 80: 223-232. | [10] | Buijs RM, Hermes MHLJ, Kalsbeek A. The suprachiasmatic nucleus—paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog Brain Res, 1998, 119: 365-382. | [11] | Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell, 1998, 93(6): 929-937. | [12] | An Y, Xu Y. The mechanism of mammalian circadian rhythms. Chin Bull Life Sci, 2015, 27(11): 1372-1379. | [12] | 安扬, 徐璎. 哺乳动物昼夜节律机制研究进展. 生命科学, 2015, 27(11): 1372-1379. | [13] | Pittendrigh CS. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol, 1960, 25: 159-184. | [14] | Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol, 1960, 25: 11-28. |
[1] |
杨阳, 储明星, 刘秋月. 生物钟作用机制及其对动物年节律产生的影响[J]. 遗传, 2023, 45(5): 409-424. |
[2] |
孙凤宇, 许强华. 血液发生相关microRNAs研究进展[J]. 遗传, 2022, 44(9): 756-771. |
[3] |
慕蓉蓉, 牛晴晴, 孙玉强, 梅俊, 苗蒙. 陆地棉MYB类转录因子基因GhTT2克隆及功能初步分析[J]. 遗传, 2022, 44(8): 720-728. |
[4] |
吕孟冈, 刘艾嘉, 李庆伟, 苏鹏. RHR转录因子家族起源、功能以及进化机制的研究进展[J]. 遗传, 2021, 43(3): 215-225. |
[5] |
张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[6] |
邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
[7] |
妥晓梅, 朱东丽, 陈晓峰, 荣誉, 郭燕, 杨铁林. 骨质疏松易感SNP rs4325274通过增强子远程调控SOX6基因的功能机制研究[J]. 遗传, 2020, 42(9): 889-897. |
[8] |
胡颖楚, 胡豪畅, 林少沂, 陈晓敏. DNA羟甲基化调控动脉粥样硬化的研究进展[J]. 遗传, 2020, 42(7): 632-640. |
[9] |
吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
[10] |
梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[11] |
王涛涛, 杨勇, 魏唯, 林辰涛, 马留银. 互花米草NAC转录因子家族的鉴定与表达分析[J]. 遗传, 2020, 42(2): 194-211. |
[12] |
张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[13] |
马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[14] |
孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[15] |
于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
|