遗传 ›› 2020, Vol. 42 ›› Issue (2): 194-211.doi: 10.16288/j.yczz.19-250
王涛涛1,2(), 杨勇1,2, 魏唯2, 林辰涛2, 马留银2()
收稿日期:
2019-08-27
修回日期:
2019-12-26
出版日期:
2020-02-21
发布日期:
2020-02-08
基金资助:
Taotao Wang1,2(), Yong Yang1,2, Wei Wei2, Chentao Lin2, Liuyin Ma2()
Received:
2019-08-27
Revised:
2019-12-26
Online:
2020-02-21
Published:
2020-02-08
Supported by:
摘要:
互花米草(Spartina alterniflora)作为一种海岸带盐生植物,高度耐盐胁迫,但因为缺少参考基因组,其耐盐的分子机制却尚未见报道。NAC家族蛋白是植物特有的转录因子,调控植物的生长发育和胁迫应答。为了鉴定互花米草NAC蛋白(SaNAC)并探究它们与互花米草生长发育及胁迫响应之间的关系,本研究以互花米草三代全长转录组数据为参考,通过与水稻(Oryza sativa)、拟南芥(Arabidopsis thaliana)和玉米(Zea mays)NAC蛋白序列进行比对,并结合保守功能域进一步筛选,最终找到62个SaNAC蛋白。从蛋白序列比对、进化、motif预测、同源性比较、亚细胞定位、组织表达以及非生物胁迫下的基因差异表达等方面分别对互花米草NAC家族成员进行分析,结果发现SaNAC蛋白均含有保守的NAM结构域,且在进化上与水稻NAC家族具有一定的相似性;SaNAC家族中的两个蛋白SaNAC9和SaNAC49在细胞核表达;另外,本研究还发现互花米草SaNAC基因表达具有高度组织和胁迫应答差异性。这些结果表明互花米草NAC转录因子家族不仅具有保守的功能域,而且在调控互花米草的生长发育和非生物胁迫响应过程中具有重要的作用。
王涛涛, 杨勇, 魏唯, 林辰涛, 马留银. 互花米草NAC转录因子家族的鉴定与表达分析[J]. 遗传, 2020, 42(2): 194-211.
Taotao Wang, Yong Yang, Wei Wei, Chentao Lin, Liuyin Ma. Identification and expression analyses of the NAC transcription factor family in Spartina alterniflora[J]. Hereditas(Beijing), 2020, 42(2): 194-211.
表1
本研究使用的引物序列"
基因名称 | 引物序列(5′→3′) | 引物用途 |
---|---|---|
SaNAC1 | F: AACACACTATCCTGCCTGCT | qRT-PCR |
R: AGCTAGGTTCAAAGGACGCT | ||
SaNAC5 | F: TCCATCCTTCTGACGCTGAA | qRT-PCR |
R: TGTTGCCCTGTTTGATCTGC | ||
SaNAC9 | F: CGAGGAGCTCATCACGTACT | qRT-PCR |
R: TTAGTGGCACGGTTTGTTCG | ||
SaNAC11 | F: ACTGCCACCACAAAATCGAC | qRT-PCR/RT-PCR |
R: TAACATATGCCGTCCTCCCC | ||
SaNAC15 | F: CAAGAAGGTGGTCAACGAGC | qRT-PCR |
R: TCGCCTTCCAGTATCCAGTC | ||
SaNAC17 | F: CCTCTACAAGTTCGACCCGT | qRT-PCR/RT-PCR |
R: GACGAGCGCCTTCTTGATG | ||
SaNAC18 | F: CTTGGTTCCATACAGCAGCC | qRT-PCR |
R: GCTCTTCGCCTTGACATCTG | ||
SaNAC19 | F: ATCATGCACGAGTACAGGCT | qRT-PCR |
R: GCGCGTTCTTGTTGTTCTTG | ||
SaNAC22 | F: AACTGGGTCATGCACGAGTA | qRT-PCR/RT-PCR |
R: TCATCCTCCTCCTCTTCCCA | ||
SaNAC24 | F: GGCGAGAAGGAGTGGTACTT | qRT-PCR |
R: CTCGTGCATGATCCAGTTGG | ||
SaNAC25 | F: TCAAGGTTCGAACGAGACCA | qRT-PCR |
R: TTCATAGTGCCATCCCGACA | ||
SaNAC26 | F: ATCCACATACCCCACCCAAG | qRT-PCR |
R: CCGGAAGAAGACGACGAGTA | ||
SaNAC28 | F: GGTGAGGAGGAACAGAACGA | qRT-PCR/RT-PCR |
R: CCTGCCCTTGTAGTACACCA | ||
SaNAC30 | F: AGTGGTACTTCTTCTCGCCG | qRT-PCR |
R: CTCGTGCATGATCCAGTTGG | ||
SaNAC31 | F: GATCGTCTCGCACTACCTCA | qRT-PCR/RT-PCR |
R: TTGTCCTTTCCGGTAGCCTT | ||
SaNAC37 | F: AAGAACGAGTGGGAGAAGGC | qRT-PCR/RT-PCR |
R: TAGCTGAGGTCGACGAACAG | ||
SaNAC38 | F: AGTCTCTCCGTGCTTCAACA | qRT-PCR |
R: CTCTAGAAGCTCCTGGTCCG | ||
SaNAC43 | F: CTCCTCCTGGCTAACTCGAC | qRT-PCR/RT-PCR |
R: TCCCCACGTTAGGATGATGG | ||
SaNAC45 | F: GAGGAGCTCATCACGCACTA | qRT-PCR |
R: AAGATCTCCCTGTCCTTGCC |
续表1
本研究使用的引物序列"
基因名称 | 引物序列(5′→3′) | 引物用途 |
---|---|---|
SaNAC46 | F: GGCGAGAAGGAGTGGTACTT | qRT-PCR/RT-PCR |
R: CTCGTGCATGATCCAGTTGG | ||
SaNAC51 | F: GCTCGTCAAATCCTACCTGC | qRT-PCR/RT-PCR |
R: TTGGATTTGGCCTCGTTGTG | ||
SaNAC56 | F: TCGACATGACCACCTCCTAC | qRT-PCR/RT-PCR |
R: ATGCTCTGGATGTCGTCGAA | ||
SaNAC57 | F: GAAGAGCTGGTGGTGCAGTA | qRT-PCR |
R: CCGGATCGCGAAGAAGTACT | ||
SaNAC59 | F: CATGATGTTGGACTGGGTGC | qRT-PCR/RT-PCR |
R: ATGGAACTGGTGGTGATCGT | ||
SaNAC60 | F: AGGGCGAGTGGTACTTCTTC | qRT-PCR/RT-PCR |
R: CTTCTTGACGCCGATCATGG | ||
SaACTIN | F: AGGGCAGTTTTCCCTAGCAT | qRT-PCR/RT-PCR |
R: CTCTCTTGGACTGTGCCTCA | ||
SaNAC9 | F: TGACCTCGAGACTAGTATGAGTACGGAAGGGTCAGG | 亚细胞定位载体构建 |
R: AGGTGGAGGTCCCCCGGGCACCTGGTAACCAGCAGCA | ||
SaNAC49 | F: TGACCTCGAGACTAGTATGGAGATGGAGCAGGATCTC | 亚细胞定位载体构建 |
R: AGGTGGAGGTCCCCCGGGGTAGAGCAGATTGGCCAGGGT |
表2
互花米草NAC蛋白基本信息"
转录本序列号 | 蛋白名称 | 氨基酸数量(aa) | 分子量(kDa) | 等电点 | 预测的蛋白定位 |
---|---|---|---|---|---|
Cluster275-001 | SaNAC1 | 445 | 49.6 | 4.56 | 细胞核 |
Cluster1229-001 | SaNAC2 | 430 | 61.2 | 4.3 | 细胞外 |
Cluster1867-001 | SaNAC3 | 187 | 21.4 | 9.91 | 细胞核 |
Cluster2112-001 | SaNAC4 | 747 | 82.7 | 4.71 | 细胞外 |
Cluster4261-001 | SaNAC5 | 359 | 39.3 | 5.31 | 细胞核 |
Cluster4343-001 | SaNAC6 | 858 | 93.2 | 4.47 | 细胞外 |
Cluster5577-001 | SaNAC7 | 569 | 62.1 | 5.62 | 细胞核 |
Cluster6349-001 | SaNAC8 | 438 | 48.9 | 4.59 | 细胞核 |
Cluster7422-001 | SaNAC9 | 361 | 39.1 | 8.93 | 细胞核 |
Cluster9525-001 | SaNAC10 | 731 | 80.7 | 4.86 | 细胞外 |
Cluster10144-001 | SaNAC11 | 405 | 45.6 | 8.48 | 细胞核 |
Cluster12101-001 | SaNAC12 | 479 | 52.8 | 5.8 | 细胞核 |
Cluster13102-001 | SaNAC13 | 518 | 56 | 5.55 | 细胞核 |
Cluster14225-001 | SaNAC14 | 685 | 75.8 | 4.85 | 细胞外 |
Cluster15400-004 | SaNAC15 | 186 | 21.2 | 9.57 | 细胞核 |
Cluster15711-001 | SaNAC16 | 710 | 77.7 | 4.61 | 细胞外 |
Cluster16418-001 | SaNAC17 | 320 | 34.8 | 5.92 | 细胞核 |
Cluster17526-001 | SaNAC18 | 653 | 71.4 | 4.73 | 细胞外 |
Cluster17869-001 | SaNAC19 | 322 | 35.2 | 6.01 | 细胞核 |
Cluster18322-001 | SaNAC20 | 190 | 21.5 | 9.94 | 细胞核 |
Cluster18506-001 | SaNAC21 | 487 | 53.4 | 4.46 | 细胞核 |
Cluster18550-001 | SaNAC22 | 636 | 69.1 | 4.53 | 细胞外 |
Cluster18579-001 | SaNAC23 | 638 | 69.4 | 4.5 | 细胞外 |
Cluster19615-001 | SaNAC24 | 280 | 31.2 | 8.74 | 细胞核 |
Cluster20092-001 | SaNAC25 | 312 | 34.2 | 4 | 细胞外 |
Cluster20280-001 | SaNAC26 | 288 | 31.9 | 6.92 | 细胞核 |
Cluster21221-001 | SaNAC27 | 601 | 67 | 5.76 | 细胞外 |
Cluster23463-001 | SaNAC28 | 345 | 39.8 | 6.25 | 细胞核 |
续表2
互花米草NAC蛋白基本信息"
转录本序列号 | 蛋白名称 | 氨基酸数量(aa) | 分子量(kDa) | 等电点 | 预测的蛋白定位 |
---|---|---|---|---|---|
Cluster24200-001 | SaNAC29 | 441 | 49.8 | 7.43 | 细胞外 |
Cluster24596-001 | SaNAC30 | 333 | 36.5 | 5.75 | 细胞核 |
Cluster24844-001 | SaNAC31 | 350 | 38.6 | 5.97 | 细胞核 |
Cluster24971-001 | SaNAC32 | 401 | 43.7 | 6.2 | 细胞核 |
Cluster25024-001 | SaNAC33 | 397 | 42.6 | 6.39 | 细胞核 |
Cluster25479-001 | SaNAC34 | 346 | 38.2 | 6.03 | 细胞核 |
Cluster25519-001 | SaNAC35 | 376 | 40.4 | 6.27 | 细胞核 |
Cluster25968-001 | SaNAC36 | 280 | 31.7 | 7.62 | 细胞核 |
Cluster26335-001 | SaNAC37 | 296 | 33.3 | 5.84 | 细胞核 |
Cluster26479-001 | SaNAC38 | 367 | 40.3 | 8.97 | 细胞核 |
Cluster26810-001 | SaNAC39 | 471 | 53 | 8.25 | 细胞核 |
Cluster26901-001 | SaNAC40 | 314 | 34.7 | 8.68 | 细胞核 |
Cluster27315-001 | SaNAC41 | 399 | 43.3 | 6.59 | 细胞核 |
Cluster27759-001 | SaNAC42 | 357 | 40 | 5.59 | 细胞核 |
Cluster27876-001 | SaNAC43 | 379 | 41 | 8.26 | 细胞核 |
Cluster27938-001 | SaNAC44 | 419 | 46.8 | 5.18 | 细胞核 |
Cluster28031-001 | SaNAC45 | 350 | 37.8 | 6.4 | 细胞核 |
Cluster28253-001 | SaNAC46 | 194 | 21.7 | 9.97 | 细胞核 |
Cluster28923-001 | SaNAC47 | 181 | 20.1 | 10.4 | 细胞核 |
Cluster28941-001 | SaNAC48 | 402 | 44.1 | 6.12 | 细胞核 |
Cluster28982-001 | SaNAC49 | 313 | 35.2 | 6.72 | 细胞核 |
Cluster29067-001 | SaNAC50 | 361 | 40.2 | 6.79 | 细胞核 |
Cluster29514-001 | SaNAC51 | 331 | 35.6 | 6.12 | 细胞外 |
Cluster29630-001 | SaNAC52 | 373 | 40.5 | 8.26 | 细胞核 |
Cluster29846-001 | SaNAC53 | 243 | 26.8 | 9.78 | 细胞核 |
Cluster30123-001 | SaNAC54 | 285 | 31.3 | 8.43 | 细胞核 |
Cluster30128-001 | SaNAC55 | 357 | 39.5 | 9.36 | 细胞核 |
Cluster30156-001 | SaNAC56 | 282 | 31.5 | 8.69 | 细胞核 |
Cluster30326-001 | SaNAC57 | 215 | 23.2 | 9.96 | 细胞核 |
Cluster30465-001 | SaNAC58 | 306 | 33.9 | 8.63 | 细胞核 |
Cluster30667-001 | SaNAC59 | 349 | 38.8 | 6.35 | 细胞核 |
Cluster30676-001 | SaNAC60 | 288 | 31.7 | 8.92 | 细胞核 |
Cluster31570-001 | SaNAC61 | 229 | 24.4 | 10.15 | 细胞核 |
Cluster32036-001 | SaNAC62 | 271 | 30.6 | 7.03 | 细胞核 |
[1] |
Zhu JK . Abiotic stress signaling and responses in plants. Cell, 2016,167(2):313-324.
doi: 10.1016/j.cell.2016.08.029 pmid: 27716505 |
[2] | Anumalla M, Roychowdhury R, Geda CK, Bharathkumar S, Goutam KD, Dev TSSM . Mechanism of stress signal transduction and involvement of stress inducible transcription factors and genes in response to abiotic stresses in plants. Int J Sci Res, 2016,7(8):12754-12771. |
[3] |
Khan SA, Li MZ, Wang SM, Yin HJ . Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci, 2018,19(6):E1634.
doi: 10.3390/ijms19061634 pmid: 29857524 |
[4] |
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M . Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997,9(6):841-857.
doi: 10.1105/tpc.9.6.841 pmid: 9212461 |
[5] |
Ooka H, Satoh K , Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa# and Arabidopsis thaliana. DNA Res, 2003,10(6):239-247.
doi: 10.1093/dnares/10.6.239 pmid: 15029955 |
[6] |
Sablowski RW, Meyerowitz EM . A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998,92(1):93-103.
doi: 10.1016/s0092-8674(00)80902-2 pmid: 9489703 |
[7] |
Wang TZ, Liu M, Zhao MG, Chen R, Zhang WH . Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago Truncatula using genome-wide high-throughput sequencing. BMC Plant Biol, 2015,15:131.
doi: 10.1186/s12870-015-0530-5 pmid: 26048392 |
[8] |
Kim HJ, Nam HG, Lim PO . Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol, 2016,33:48-56.
doi: 10.1016/j.pbi.2016.06.002 pmid: 27314623 |
[9] |
Park J, Kim YS, Kim SG, Jung JH, Woo JC, Park CM . Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol, 2011,156(2):537-549.
doi: 10.1104/pp.111.177071 |
[10] |
Sun LJ, Li DY, Zhang HJ, Song FM . Functions of NAC transcription factors in biotic and abiotic stress responses in plants. Hereditas(Beijing), 2012,34(8):993-1002.
doi: 10.3724/SP.J.1005.2012.00993 |
孙利军, 李大勇, 张慧娟, 宋凤鸣 . NAC转录因子在植物抗病和抗非生物胁迫反应中的作用. 遗传, 2012,34(8):993-1002.
doi: 10.3724/SP.J.1005.2012.00993 |
|
[11] |
Mao XG, Chen SS, Li A, Zhai CC, Jing RL . Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One, 2014,9(1):e84359.
doi: 10.1371/journal.pone.0084359 pmid: 24427285 |
[12] |
Mao XG, Zhang HY, Qian XY, Li A, Zhao GY, Jing RL . TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot, 2012,63(8):2933-2946.
doi: 10.1093/jxb/err462 |
[13] |
Zhang LN, Zhang LC, Xia C, Zhao GY, Jia JZ, Kong XY . The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci, 2015,6:1174.
doi: 10.3389/fpls.2015.01174 pmid: 26834757 |
[14] |
Wang LQ, Li Z, Lu MZ, Wang YC . ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci, 2017,8:635.
doi: 10.3389/fpls.2017.00635 pmid: 28491072 |
[15] |
Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S . Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010,465(1-2):30-44.
doi: 10.1016/j.gene.2010.06.008 pmid: 20600702 |
[16] |
Sun H, Hu ML, Li JY, Chen L, Li M, Zhang SQ, Zhang XL, Yang XY . Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biol, 2018,18(1):150.
doi: 10.1186/s12870-018-1367-5 pmid: 30041622 |
[17] | Ma JH, Tong DD, Zhang WL, Zhang DJ, Shao Y, Yang Y, Jiang L . Identification and analysis of the NAC transcription factor family in Triticum urartu. Hereditas(Beijing), 2016,38(3):243-253. |
马建辉, 仝豆豆, 张文利, 张黛静, 邵云, 杨云, 姜丽娜 . 乌拉尔图小麦NAC转录因子的筛选与分析. 遗传, 2016,38(3):243-253. | |
[18] |
Gong X, Zhao LY, Song XF, Lin ZK, Gu BJ, Yan JX, Zhang SL, Tao ST, Huang XS . Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biol, 2019,19(1):161.
doi: 10.1186/s12870-019-1760-8 pmid: 31023218 |
[19] |
Pascual MB, Cánovas FM, Ávila C . The NAC transcription factor family in maritime pine (Pinus pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol, 2015,15:254.
doi: 10.1186/s12870-015-0640-0 pmid: 26500018 |
[20] |
Zhuo XK, Zheng TC, Zhang ZY, Zhang YC, Jiang LB, Ahmad S, Sun DL, Wang J, Cheng TR, Zhang QX . Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume. Genes, 2018,9(10):494.
doi: 10.3390/genes9100494 pmid: 30322087 |
[21] |
Rhoads A, Au KF . PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 2015,13(5):278-289.
doi: 10.1016/j.gpb.2015.08.002 pmid: 26542840 |
[22] |
Karan R, Subudhi PK . Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. Plant Cell Rep, 2014,33(2):373-384.
doi: 10.1007/s00299-013-1537-8 pmid: 24247851 |
[23] |
Ye WB, Wang TT, Wei W, Lou ST, Lan FX, Zhu S, Li QZ, Ji GL, Lin CT, Wu XH, Ma LY . The full-length transcriptome of Spartina alterniflora reveals the complexity of high salt tolerance in monocotyledonous halophyte. Plant & Cell Physiology, 2020,DOI: 10.1093/pcp/pcaa013.
doi: 10.1093/pcp/pcaa013 pmid: 32044993 |
[24] |
Langmead B, Salzberg SL . Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012,9(4):357-359.
doi: 10.1038/nmeth.1923 pmid: 22388286 |
[25] |
Li B, Dewey CN . RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011,12:323.
doi: 10.1186/1471-2105-12-323 pmid: 21816040 |
[26] |
Finkelstein R . Abscisic acid synthesis and response. Arabidopsis Book, 2013,11:e0166.
doi: 10.1199/tab.0166 pmid: 24273463 |
[27] |
Todaka D, Shinozaki K, Yamaguchi-Shinozaki K . Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought- tolerant transgenic rice plants. Front Plant Sci, 2015,6:84.
doi: 10.3389/fpls.2015.00084 pmid: 25741357 |
[28] |
Yuan X, Wang H, Cai JT, Bi Y, Li DY, Song FM . Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol, 2019,19(1):278.
doi: 10.1186/s12870-019-1883-y pmid: 31238869 |
[29] |
Huang L, Hong YB, Zhang HJ, Li DY, Song FM . Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol, 2016,16(1):203.
doi: 10.1186/s12870-016-0897-y pmid: 27646344 |
[30] |
Hussain RM, Ali M, Feng X, Li X . The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biol, 2017,17(1):55.
doi: 10.1186/s12870-017-1001-y pmid: 28241800 |
[31] |
Duval M, Hsieh TF, Kim SY, Thomas TL . Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol, 2002,50(2):237-248.
doi: 10.1023/a:1016028530943 pmid: 12175016 |
[32] |
Bedre R, Mangu VR, Srivastava S, Sanchez LE, Baisakh N . Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genomics, 2016,17(1):657.
doi: 10.1186/s12864-016-3017-3 pmid: 27542721 |
[33] |
Lee S, Seo PJ, Lee HJ, Park CM . A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J, 2012,70(5):831-844.
doi: 10.1111/j.1365-313X.2012.04932.x |
[34] |
Wu YZ, Hou JX, Yu F, Nguyen STT, Mccurdy DW . Transcript profiling Identifies NAC-domain genes involved in regulating wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana. Front Plant Sci, 2018,9:341.
doi: 10.3389/fpls.2018.00341 pmid: 29599795 |
[35] |
Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA . SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol, 2011,11:173.
doi: 10.1186/1471-2229-11-173 pmid: 22133261 |
[36] | Skelding AD, Winterbotham J . The structure and development of the hydathodes of Spartina townsendii Groves. New Phytologist, 1939,38(1):69-79. |
[37] |
Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim TM, Lin Q, Loh CS, Kumar PP . Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC Plant Biol, 2014,14:291.
doi: 10.1186/s12870-014-0291-6 pmid: 25404140 |
[38] |
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S . Multilevel regulation of abiotic stress responses in plants. Front Plant Sci, 2017,8:1564.
doi: 10.3389/fpls.2017.01564 pmid: 29033955 |
[39] |
Takasaki H, Maruyama K, Takahashi F, Fujita M, Yoshida T, Nakashima K, Myouga F, Toyooka K, Yamaguchi- Shinozaki K, Shinozaki K . SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J, 2015,84(6):1114-1123.
doi: 10.1111/tpj.13067 pmid: 26518251 |
[40] |
Liu YC, Sun J, Wu YR . Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res, 2016,129(5):955-962.
doi: 10.1007/s10265-016-0833-0 pmid: 27216423 |
[1] | 陈凯, 王灏, 陈燚婷, 符可, 韩之刚, 李聪, 斯金平, 陈东红. 铁皮石斛WOX家族基因在生长发育中的功能分析[J]. 遗传, 2023, 45(8): 700-714. |
[2] | 李飞飞, 王韵, 顾冀海, 张玉明, 柳峰松, 倪志华. E2F家族转录因子在肿瘤发生中的作用[J]. 遗传, 2023, 45(7): 580-592. |
[3] | 王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[4] | 孙凤宇, 许强华. 血液发生相关microRNAs研究进展[J]. 遗传, 2022, 44(9): 756-771. |
[5] | 慕蓉蓉, 牛晴晴, 孙玉强, 梅俊, 苗蒙. 陆地棉MYB类转录因子基因GhTT2克隆及功能初步分析[J]. 遗传, 2022, 44(8): 720-728. |
[6] | 徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[7] | 张爽, 郭珊珊, 王汝雯, 马仁燕, 吴显敏, 陈佩杰, 王茹. PARK基因家族在骨骼肌肌病中的研究进展[J]. 遗传, 2022, 44(7): 545-555. |
[8] | 赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[9] | 朱前彬, 甘志承, 李晓翠, 张英杰, 赵合明, 黄先忠. 小鼠耳芥MAPKKK基因家族全基因组鉴定及进化与表达[J]. 遗传, 2022, 44(11): 1044-1055. |
[10] | 周聪, 周强伟, 成盛, 李国亮. CTCF在介导三维基因组形成及调控基因表达中的研究进展[J]. 遗传, 2021, 43(9): 816-821. |
[11] | 吕孟冈, 刘艾嘉, 李庆伟, 苏鹏. RHR转录因子家族起源、功能以及进化机制的研究进展[J]. 遗传, 2021, 43(3): 215-225. |
[12] | 徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. |
[13] | 邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
[14] | 妥晓梅, 朱东丽, 陈晓峰, 荣誉, 郭燕, 杨铁林. 骨质疏松易感SNP rs4325274通过增强子远程调控SOX6基因的功能机制研究[J]. 遗传, 2020, 42(9): 889-897. |
[15] | 吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: