[1] | Hinnen A, Hicks JB, Fink GR . Transformation of yeast. Proc Natl Acad Sci USA, 1978,75(4):1929-1933. | [2] | Orr-Weaver TL, Szostak JW, Rothstein RJ . Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA, 1981,78(10):6354-6358. | [3] | Rothestein RJ . One step gene disruption in yeast. Methods Enzymol, 1983,101:202-211. | [4] | Thomas KR, Folger KR , Capecchi MR . High frequency targeting of genes to specific sites in the mammalian genome.Cell, 1986, 14; 44(3):419-428. | [5] | Rouet P, Smih F, Jasin ME . Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA, 1994,91(13):6064-6068. | [6] | Smih F, Rouet P, Romanienko PJ, Jasin M . Double- strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res, 1995,23(24):5012-5019. | [7] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.Proc Natl Acad Sci USA, 1996,93(3):1156-1160. | [8] | Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF . Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010,186(2):757-761. | [9] | Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987,169(12):5429-5433. | [10] | Mojica FJ, Díez-Villaseñor C, Soria E, Juez G . Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol, 2000,36(1):244-246. | [11] | Jansen R, Embden JD, Gaastra W, Schouls LM . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575. | [12] | Vergunst AC, Hooykaas PJJ . Recombination in the plant genome and its application in biotechnology. Crit Rev Plant Sci, 1999,18(1):1-31. | [13] | Mengiste T, Paszkowski J . Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem, 1999,380(7-8):749-758. | [14] | Lieber MR . The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010,79:181-211. | [15] | Krejci L, Altmannova V, Spirek M, Zhao X . Homologous recombination and its regulation. Nucleic Acids Res, 2012,40(13):5795-5818. | [16] | Heyer WD, Ehmsen KT, Liu J . Regulation of homologous recombination in eukaryotes. Annu Rev Genet, 2010,44:113-139. | [17] | Bibikova M, Beumer K, Trautman JK, Carroll D . Enhancing gene targeting with designed zinc finger nucleases. Science, 2003,300(5620):764. | [18] | Miller J , McLachlan AD, Klug A . Repetitive zinc- binding domains in the protein transcription factor TFIIIA from Xenopus oocytes. EMBO J, 1985,4(6):1609-1614. | [19] | Wolfe SA, Nekludova L, Pabo CO . DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct, 2000,29:183-212. | [20] | Klug A . The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Q Rev Biophys, 2010,43(1):1-21. | [21] | Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD . Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010,11(9):636-646. | [22] | Sugisaki H, Kanazawa S . New restriction endonucleases from Flavobacterium okeanokoites ( FokⅠ) and Micrococcus luteus( MluⅠ). Gene, 1981,16(1-3):73-78. | [23] | Vanamee ES, Santagata S, Aggarwal AK . FokⅠ requires two specific DNA sites for cleavage.J Mol Biol, 2001,309(1):69-78. | [24] | Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I . FokⅠ dimerization is required for DNA cleavage. Proc Natl Acad Sci USA, 1998,95(18):10570-10575. | [25] | Händel EM, Alwin S, Cathomen T . Expanding or restricting the target site repertoire of zinc-finger nucleases: The inter-domain linkeras a major determinant of target site selectivity. Mol Ther, 2009,17(1):104-111. | [26] | Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S . Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol, 2001,21(1):289-297. | [27] | Bibikova M, Golic M, Golic KG, Carroll D . Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002,161(3):1169-1175. | [28] | Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A. Collingwood TN . Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases.Proc Natl Acad Sci USA, 105(15):5809-5814. | [29] | Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R . Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009,325(5939):433. | [30] | Doyon Y , McCammon JM,Miller JC,Faraji F,Ngo C,Katibah GE,Amora R,Hocking TD,Zhang L,Rebar EJ,Gregory PD,Urnov FD,Amacher SL. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol, 2008,26(6):702-708. | [31] | Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L . Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res, 2011,21(6):979-982. | [32] | Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ . Targeted integration in rat and mouse embryos with zinc- finger nucleases. Nat Biotechnol, 2010,29(1):64-67. | [33] | Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S . Zinc finger nucleases: Custom- designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res, 2005,33(18):5978-5990. | [34] | Rahman SH, Maeder ML, Joung JK, Cathomen T . Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum Gene Ther, 2011,22(8):925-933. | [35] | Bogdanove AJ, Voytas DF . TAL effectors: customizable proteins for DNA targeting. Science, 2011,333(6051):1843-1846. | [36] | Carlson DF, Fahrenkrug SC, Hackett PB . Targeting DNA with fingers and TALENs. Mol Ther Nucleic Acids, 2012,1:e3. | [37] | Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ . A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011,29(2):143-148. | [38] | Moscou MJ, Bogdanove AJ . A simple cipher governs DNA recognition by TAL effectors. Science, 2009,326(5959):1501. | [39] | Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U . Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science, 2009,326(5959):1509-1512. | [40] | Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N, Shi Y . Recognition of methylated DNA by TAL effectors. Cell Res, 2012,22(10):1502-1504. | [41] | Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N . Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 2012,335(6069):720-723. | [42] | Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P . Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol, 2011,29(2):149-153. | [43] | Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF . Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011,39(12):e82. | [44] | Morbitzer R, Elsaesser J, Hausner J, Lahaye T . Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res, 2011,39(13):5790-5799. | [45] | Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T . A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res, 2011,39(21):9283-9293. | [46] | Deveau H, Garneau JE, Moineau S . CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol, 2010,64:475-493. | [47] | Horvath P, Barrangou R . CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010,327(5962):167-170. | [48] | Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011,471(7340):602-607. | [49] | Carte J, Wang R, Li H, Terns RM, Terns MP . Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev, 2008,22(24):3489-3496. | [50] | Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA . Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science, 2010,329(5997):1355-1358. | [51] | Carte J, Pfister NT, Compton MM, Terns RM, Terns MP . Binding and cleavage of CRISPR RNA by Cas6. RNA, 2010,16(11):2181-2188. | [52] | Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | [53] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. | [54] | Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI , Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011,9(6):467-477. | [55] | Garneau JE, Dupuis Mè, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71. | [56] | Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK . Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013,31(3):227-229. | [57] | Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA . Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014,343(6176):1247997-1247997. | [58] | Sternberg SH , LaFrance B, Kaplan M, Doudna JA. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature, 2015,527(7576):110-113. | [59] | Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016 , 533(7603):420-424. | [60] | Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR . Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017,551(7681):464-471. | [61] | The “new favorite” of gene editing technology—single base editors. Hereditas (Beijing), 2017,39(12):1115-1121. | [61] | 魏瑜, 张晓辉, 李大力 . 基因编辑之“新宠”—单碱基基因组编辑系统. 遗传, 2017,39(12):1115-1121. | [62] | Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63. | [63] | Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F . DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnol, 2013,31(9):827-832. | [64] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnol, 2013,31(9):822-826. | [65] | Zheng W, Gu F . Progress of application and off-target effects of CRISPR/Cas9.Hereditas (Beijing), 2015(10):1003-1010. | [65] | 郑武, 谷峰 . CRISPR/Cas9 的应用及脱靶效应研究进展.遗传, 2015(10):1003-1010. | [66] | Pattanayak V, Ramirez CL, Joung JK, Liu DR . Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods, 2011,8(9):765-770. | [67] | Bhakta MS, Henry IM, Ousterout DG, Das KT, Lockwood SH, Meckler JF, Wallen MC, Zykovich A, Yu Y, Leo H, Xu L, Gersbach CA, Segal DJ . Highly active zinc-finger nucleases by extended modular assembly. Genome Res, 2013,23(3):530-538. | [68] | Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ . An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol, 2007,25(7):778-785. | [69] | Wang J, Friedman G, Doyon Y, Wang NS, Li CJ, Miller JC, Hua KL, Yan JJ, Babiarz JE, Gregory PD, Holmes MC . Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res, 2012,22(7):1316-1326. | [70] | Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F . Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013,154(6):1380-1389. | [71] | Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS . Analysis of off-target effects of CRISPR/Cas- derived RNA-guided endonucleases and nickases . Genome Res, 2014,24(1):132-141. | [72] | Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351(6268):84-88. | [73] | Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR . High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013,31(9):839-843. | [74] | Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK . GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.Nat Biotechnol, 2015,33(2):187-197. | [75] | Hutchinson L, Kirk R . High drug attrition rates—where are we going wrong? Nat Rev Clin Oncol, 2011,8(4):189-190. | [76] | Nissen SE, Wolski K . Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med, 2007,356(24):2457-2471. | [77] | Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L . Generation of PPAR-γ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res, 2011,21(6):979-982. | [78] | Montag J, Petersen B, Flögel AK, Becker E, Lucas- Hahn A, Cost GJ, Mühlfeld C, Kraft T, Niemann H, Brenner B . Successful knock-in of Hypertrophic Cardiomyopathy-mutation R723G into theMYH7 gene mimics HCM pathology in pigs.Sci Rep, 8(1):4786. | [79] | Watanabe M, Nakano K, Matsunari H, Matsuda T, Maehara M, Kanai T, Kobayashi M, Matsumura Y, Sakai R, Kuramoto M, Hayashida G, Asano Y, Takayanagi S, Arai Y, Umeyama K, Nagaya M, Hanazono Y, Nagashima H . Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One, 2013,8(10):e76478. | [80] | McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA . Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell, 1995,83(3):387-395. | [81] | Ru H, Chambers MG, Fu TM, Tong AB, Liao M, Wu H . Molecular mechanism of V(D)J recombination from synaptic RAG1-RAG2 complex structures. Cell, 2015,163(5):1138-1152. | [82] | Lee K, Kwon DN, Ezashi T, Choi YJ, Park C, Ericsson AC, Brown AN, Samuel MS, Park KW, Walters EM, Kim DY, Kim JH, Franklin CL, Murphy CN, Roberts RM, Prather RS, Kim JH . Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA, 2014,111(20):7260-7265. | [83] | Huang J, Guo X, Fan N, Song J, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yan Q, Yi X, Schambach A, Frampton J, Esteban MA, Yang D, Yang H, Lai L . RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol, 2014,193(3):1496-1503. | [84] | Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC . Efficient TALEN- mediated gene knockout in livestock. Proc Natl Acad Sci USA, 2012,109(43):17382-17387. | [85] | Huang L, Hua Z, Xiao H, Cheng Y, Xu K, Gao Q, Xia Y, Liu Y, Zhang X, Zheng X, Mu Y, Li K . CRISPR/ Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget, 2017,8(23):37751-37760. | [86] | Luo Y, Li J, Liu Y, Lin L, Du Y, Li S, Yang H, Vajta G, Callesen H, Bolund L, Sørensen CB . High efficiency of BRACA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res, 2011,20(5):975-988. | [87] | Wang K, Jin Q, Ruan D, Yang Y, Liu Q, Wu H, Zhou Z, Ouyang Z, Liu Z, Zhao Y, Zhao B, Zhang Q, Peng J, Lai C, Fan N, Liang Y, Lan T, Li N, Wang X, Wang X, Fan Y, Doevendans PA, Sluijter JPG, Liu P, Li X, Lai L . Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing.Genome Res, 2017,27(12):2061-2071. | [88] | Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L . Generation of CRISPR/Cas9- mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci, 2015,72(6):1175-1184. | [89] | Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C, Yang H, Li L, Liu Q, Shi H, Xu G, Zhao H, Wei H, Pei Z, Li S, Lai L , Li XJ. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease.Cell, 2018, 173(4): 989- 1002. e13. | [90] | Hai T, Teng F, Guo R, Li W, Zhou Q . One-step generation of knockout pigs by zygote injection of CRISPR/ Cas system. Cell Res, 2014,24(3):372-375. | [91] | Han K, Liang L, Li L, Ouyang Z, Zhao B, Wang Q, Liu Z, Zhao Y, Ren X, Jiang F, Lai C, Wang K, Yan S, Huang L, Guo L, Zeng K, Lai L, Fan N . Generation of Hoxc13 knockout pigs recapitulates human ectodermal dysplasia-9. Hum Mol Genet, 2017,26(1):184-191. | [92] | Ibrahim Z, Busch J, Awwad M, Wagner R, Wells K, Cooper DK . Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation, 2006,13(6):488-499. | [93] | Le Tissier P, Stoye JP, Takeuchi Y, Patience C, Weiss RA . Two sets of human-tropic pig retrovirus. Nature, 1997,389(6652):681-682. | [94] | Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS . Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 2002,295(5557):1089-1092. | [95] | Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H . Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA, 2011,108(29):12013-12017. | [96] | Song KH, Kang YJ, Jin UH, Park YI, Kim SM, Seong HH, Hwang S, Yang BS, Im GS, Min KS, Kim JH, Chang YC, Kim NH, Lee YC, Kim CH . Cloning and functional characterization of pig CMP-N-acetylneuraminic acid hydroxylase for the synthesis of N-glycolylneuraminic acid as the xenoantigenic determinant in pig-human xenotransplantation. Biochem J, 2010,427(1):179-188. | [97] | Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ . Double knockout pigs deficient in N-glycolylneuraminic acid and G alactose α-1, 3- Galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation, 2013,20(1):27-35. | [98] | Martens GR, Reyes LM, Butler JR, Ladowski JM, Estrada JL, Sidner RA, Eckhoff DE, Tector M, Tector AJ . Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1 /CMAH/B4GalNT2, and SLA Class I knockout pigs. Transplantation, 2017,101(4):e86-e92. | [99] | Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G . Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015,350(6264):1101-1104. | [100] | Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Güell M, Church GM, Yang L . Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 2017,357(6357):1303-1307. | [101] | Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, Kobayashi T, Yamaguchi T, Sumazaki R, Herzenberg LA, Nakauchi H . Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci USA, 2013,110(12):4557-4562. | [102] | Wu J, Vilarino M, Suzuki K, Okamura D, Bogliotti YS, Park I, Rowe J , McNabb B , Belmonte JCI ,Ross PJ . CRISPR-Cas9 mediated one-step disabling of pancreastogenesis in pigs. Sci Rep, 2017,7(1):10487-10487. | [103] | Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilariño M, Parrilla I, Soto DA, Martinez CA, Hishida T, Sánchez- Bautista S, Martinez-Martinez ML, Wang H, Nohalez A, Aizawa E, Martinez-Redondo P, Ocampo A, Reddy P, Roca J, Maga EA, Esteban CR, Berggren WT, Nuñez Delicado E, Lajara J, Guillen I, Guillen P, Campistol JM, Martinez EA, Ross PJ, Izpisua Belmonte JC . Interspecies chimerism with mammalian pluripotent stem cell. Cell, 2017,168(3):473-486. |
|