遗传 ›› 2023, Vol. 45 ›› Issue (1): 6-28.doi: 10.16288/j.yczz.22-313
高菲1(), 王煜2(), 杜嘉祥3(), 杜旭光1(), 赵建国2(), 潘登科4(), 吴森1(), 赵要风1()
收稿日期:
2022-10-08
修回日期:
2022-11-26
出版日期:
2023-01-20
发布日期:
2022-12-28
通讯作者:
杜旭光,赵建国,潘登科,吴森,赵要风
E-mail:gaofei2020019@cau.edu.cn;wangyu950306@163.com;jxdu@clonorgan.com;xuguangdu@cau.edu.cn;zhaojg@ioz.ac.cn;pandengke2002@163.com;swu@cau.edu.cn;yaofengzhao@cau.edu.cn
作者简介:
高菲,博士,工程师,研究方向:畜禽干细胞与胚胎工程。E-mail: 基金资助:
Fei Gao1(), Yu Wang2(), Jiaxiang Du3(), Xuguang Du1(), Jianguo Zhao2(), Dengke Pan4(), Sen Wu1(), Yaofeng Zhao1()
Received:
2022-10-08
Revised:
2022-11-26
Online:
2023-01-20
Published:
2022-12-28
Contact:
Du Xuguang,Zhao Jianguo,Pan Dengke,Wu Sen,Zhao Yaofeng
E-mail:gaofei2020019@cau.edu.cn;wangyu950306@163.com;jxdu@clonorgan.com;xuguangdu@cau.edu.cn;zhaojg@ioz.ac.cn;pandengke2002@163.com;swu@cau.edu.cn;yaofengzhao@cau.edu.cn
Supported by:
摘要:
猪在解剖结构、代谢、生理生化等特征方面比啮齿类动物更接近人类,因此在模拟某些人类疾病以及提供异种移植器官等方面具有其他动物不可替代的优势,是理想的人类疾病动物模型和异种器官的供体。另外,猪作为我国畜牧业最重要的物种之一,猪的品种改良、疫病防控以及动物福利等问题都与人民生活息息相关。本文主要介绍了遗传修饰猪模型在分子育种、人类疾病模型以及异种器官移植领域的研究进展及未来应用前景,希望增进相关领域研究人员对基因编辑等前沿技术的了解,理解遗传修饰猪模型在生命科学研究中的重要意义。
高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28.
Fei Gao, Yu Wang, Jiaxiang Du, Xuguang Du, Jianguo Zhao, Dengke Pan, Sen Wu, Yaofeng Zhao. Advances and applications of genetically modified pig models in biomedical and agricultural field[J]. Hereditas(Beijing), 2023, 45(1): 6-28.
表1
分子育种相关的遗传修饰猪模型"
育种方向 | 靶基因 | 编辑类型 | 表型 | 参考文献 |
---|---|---|---|---|
提高生产性能 | MSTN | 基因敲除 | 提高产肉量 | [ |
IGF2 | 突变ZBED6结合位点 | 提高产肉量 | [ | |
FBXO40 | 基因敲除 | 提高产肉量 | [ | |
UCP1 | 基因插入 | 提高抗寒能力和瘦肉率 | [ | |
提高抗病力 | CD163 | 基因敲除/片段缺失/同源替换 | 抵抗PRRSV | [ |
APN | 基因敲除 | 抵抗TGEV | [ | |
- | 过表达shRNA | 抵抗CSFV | [ | |
优良性状聚合 | CD163/APN | 基因敲除 | 同时抵抗PRRSV和TGEV | [ |
CD163/MSTN/IGF2 | 基因敲除/基因过表达 | 提高产肉量同时抵抗PRRSV | [ |
表5
人类代谢性疾病相关的遗传修饰猪模型"
人类疾病 | 基因 | 修饰方式 | 参考文献 |
---|---|---|---|
人类永久性新生儿糖尿病 | INS | 点突变 | [ |
糖尿病 | INS | 敲除 | [ |
3型成熟型青年糖尿病 | HGF1α | 转基因 | [ |
2型糖尿病 | GIPR | 转基因 | [ |
hIAPP | 敲入 | [ | |
11β-HSD1、HIAPP、CHOP | 敲入 | [ | |
非酒精性脂肪肝 | GIPRdn、hIAPP、PNPLA3I148M | 定点敲入 | [ |
高甘油三酯血症 | ApoCIII | 转基因 | [ |
高胆固醇血症、自发动脉粥样硬化 | PCSK9 | 转基因 | [ |
高胆固醇血症、自发动脉粥样硬化 | ApoE | 敲除 | [ |
高胆固醇血症、自发动脉粥样硬化、饮食诱导加速疾病发生 | LDLR | 敲除 | [ |
血清LDL-C和TC水平升高 | ApoE和LDLR | 敲除 | [ |
胆固醇吸收失调 | NPC1L1 | 敲除 | [ |
[1] | Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KCK, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B. The knockout mouse project. Nat Genet, 2004, 36(9): 921-924. |
[2] | Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, Bottomley J, Brown SD, Bürger A, Bult CJ, Bushell W, Collins FS, Desaintes C, Doe B, Economides A, Eppig JT, Finnell RH, Fletcher C, Fray M, Frendewey D, Friedel RH, Grosveld FG, Hansen J, Herault Y, Hicks G, Hörlein A, Houghton R, de Angelis MH, Huylebroeck D, Iyer V, de Jong PJ, Kadin JA, Kaloff C, Kennedy K, Koutsourakis M, Lloyd KCK, Marschall S, Mason J, McKerlie C, McLeod MP, von Melchner H, Moore M, Mujica AO, Nagy A, Nefedov M, Nutter LM, Pavlovic G, Peterson JL, Pollock J, Ramirez-Solis R, Rancourt DE, Raspa M, Remacle JE, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Schick JZ, Schnütgen F, Schofield P, Seisenberger C, Selloum M, Simpson EM, Skarnes WC, Smedley D, Stanford WL, Stewart AF, Stone K, Swan K, Tadepally H, Teboul L, Tocchini- Valentini GP, Valenzuela D, West AP, Yamamura KI, Yoshinaga Y, Wurst W. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome, 2012, 23(9-10): 580-586. |
[3] | Brown SDM, Moore MW. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome, 2012, 23(9-10): 632-640. |
[4] | Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812-818. |
[5] | McMichael AJ. Insights from past millennia into climatic impacts on human health and survival. Proc Natl Acad Sci USA, 2012, 109(13): 4730-4737. |
[6] | Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O'Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337-342. |
[7] | Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108(50): 20260-20264. |
[8] | Zhao JG, Lai LX, Ji WZ, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev, 2019, 6(3): 402-420. |
[9] | Perisse IV, Fan ZQ, Singina GN, White KL, Polejaeva IA. Improvements in gene editing technology boost its applications in livestock. Front Genet, 2021, 11: 614688. |
[10] | Proudfoot C, Mcfarlane G, Whitelaw B, Lillico S. Livestock breeding for the 21st century: the promise of the editing revolution. Front Agr Sci Eng, 2020, 7(2): 129-135. |
[11] | Song RG, Wang Y, Wang YF, Zhao JG. Base editing in pigs for precision breeding. Front Agr Sci Eng, 2020, 7(2): 161-170. |
[12] | Aiello D, Patel K, Lasagna E. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim Genet, 2018, 49(6): 505-519. |
[13] | Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet, 2007, 3(5): e79. |
[14] | Boman IA, Klemetsdal G, Blichfeldt T, Nafstad O, Våge DI. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian white sheep (Ovis aries). Anim Genet, 2009, 40(4): 418-422. |
[15] | Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet, 1997, 17(1): 71-74. |
[16] | McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90. |
[17] | Qian LL, Tang MX, Yang JZ, Wang QQ, Cai CB, Jiang SW, Li HG, Jiang K, Gao PF, Ma DZ, Chen YX, An XR, Li K, Cui WT. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep, 2015, 5: 14435. |
[18] | Wang KK, Ouyang HS, Xie ZC, Yao CG, Guo NN, Li MJ, Jiao HP, Pang DX. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 16623. |
[19] | Bi YZ, Hua ZD, Liu XM, Hua WJ, Ren HY, Xiao HW, Zhang LP, Li L, Wang ZR, Laible G, Wang Y, Dong FM, Zheng XM. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep, 2016, 6: 31729. |
[20] | Zou YL, Li ZY, Zou YJ, Hao HY, Hu JX, Li N, Li QY. Generation of pigs with a Belgian Blue mutation in MSTN using CRISPR/Cpf1-assisted ssODN-mediated homologous recombination. J Integr Agric, 2019, 18(6): 1329-1336. |
[21] | Fan ZY, Liu ZG, Xu K, Wu TW, Ruan JX, Zheng XM, Bao SD, Mu YL, Sonstegard T, Li K. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci, 2022, 65(2): 362-375. |
[22] | Matika O, Robledo D, Pong-Wong R, Bishop SC, Riggio V, Finlayson H, Lowe NR, Hoste AE, Walling GA, Del-Pozo J, Archibald AL, Woolliams JA, Houston RD. Balancing selection at a premature stop mutation in the myostatin gene underlies a recessive leg weakness syndrome in pigs. PLoS Genet, 2019, 15(1): e1007759. |
[23] | Jeon JT, Carlborg O, Törnsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundström K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet, 1999, 21(2): 157-158. |
[24] | Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832-836. |
[25] | Younis S, Schönke M, Massart J, Hjortebjerg R, Sundström E, Gustafson U, Björnholm M, Krook A, Frystyk J, Zierath JR, Andersson L. The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proc Natl Acad Sci USA, 2018, 115(9): E2048-E2057. |
[26] | Xiang GH, Ren JL, Hai T, Fu R, Yu DW, Wang J, Li W, Wang HY, Zhou Q. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell Mol Life Sci, 2018, 75(24): 4619-4628. |
[27] | Liu XF, Liu HB, Wang M, Li RQ, Zeng JH, Mo DL, Cong PQ, Liu XH, Chen YS, He ZY. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs. Transgenic Res, 2019, 28(1): 141-150. |
[28] | Ye JW, Zhang Y, Xu JL, Zhang Q, Zhu DH. FBXO40, a gene encoding a novel muscle-specific F-box protein, is upregulated in denervation-related muscle atrophy. Gene, 2007, 404(1-2): 53-60. |
[29] | Shi J, Luo LQ, Eash J, Ibebunjo C, Glass DJ. The SCF-Fbxo 40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell, 2011, 21(5): 835-847. |
[30] | Zou YL, Li ZY, Zou YJ, Hao HY, Li N, Li QY. An FBXO 40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects. Biochem Biophys Res Commun, 2018, 498(4): 940-945. |
[31] | Kopecky J, Clarke G, Enerbäck S, Spiegelman B, Kozak LP. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest, 1995, 96(6): 2914-2923. |
[32] | Zheng QT, Lin J, Huang JJ, Zhang HY, Zhang R, Zhang XY, Cao CW, Hambly C, Qin GS, Yao J, Song RG, Jia QT, Wang X, Li YS, Zhang N, Piao ZY, Ye RC, Speakman JR, Wang HM, Zhou Q, Wang YF, Jin WZ, Zhao JG. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA, 2017, 114(45): E9474-E9482. |
[33] | Wensvoort G, Terpstra C, Pol JM ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F, Broekhuijsen JM, Moonen PLJM, Zetstra T, de Boer EA, Tibben HJ, de Jong MF, van't Veld P, Greenland GJR, van Gennep JA, Voets MT, Verheijden JHM, Braamskamp J. Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q, 1991, 13(3): 121-130. |
[34] | Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc, 2005, 227(3): 385-392. |
[35] | Murtaugh MP, Elam MR, Kakach LT. Comparison of the structural protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRS virus. Arch Virol, 1995, 140(8): 1451-1460. |
[36] | Tian KG, Yu XL, Zhao TZ, Feng YJ, Cao Z, Wang CB, Hu Y, Chen XZ, Hu DM, Tian XS, Liu D, Zhang S, Deng XY, Ding YQ, Yang L, Zhang YX, Xiao HX, Qiao MM, Wang B, Hou LL, Wang XY, Yang XY, Kang LP, Sun M, Jin P, Wang SJ, Kitamura Y, Yan JH, Gao GF. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One, 2007, 2(6): e526. |
[37] | Calvert JG, Slade DE, Shields SL, Jolie R, Mannan RM, Ankenbauer RG, Welch SKW. CD 163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol, 2007, 81(14): 7371-7379. |
[38] | Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao JD, O'Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro- derived oocytes and embryos. Biol Reprod, 2014, 91(3): 78. |
[39] | Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol, 2016, 34(1): 20-22. |
[40] | Yang HQ, Zhang J, Zhang XW, Shi JS, Pan YF, Zhou R, Li GL, Li ZC, Cai GY, Wu ZF. CD 163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral Res, 2018, 151: 63-70. |
[41] | Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CBA, Archibald AL. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog, 2017, 13(2): e1006206. |
[42] | Wang HT, Shen LC, Chen JY, Liu XJ, Tan T, Hu YQ, Bai XF, Li YX, Tian KG, Li N, Hu XX. Deletion of CD 163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs. Int J Biol Sci, 2019, 15(9): 1993-2005. |
[43] | Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG, Whitelaw CBA, Archibald AL. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol, 2018, 92(16): e00415-e00418. |
[44] | Wells KD, Bardot R, Whitworth KM, Trible BR, Fang Y, Mileham A, Kerrigan MA, Samuel MS, Prather RS, Rowland RRR. Replacement of porcine CD 163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. J Virol, 2017, 91(2): e01521-16. |
[45] | Chen JY, Wang HT, Bai JH, Liu WJ, Liu XJ, Yu DW, Feng T, Sun ZL, Zhang LL, Ma LY, Hu YQ, Zou YL, Tan T, Zhong J, Hu M, Bai XF, Pan DK, Xing YM, Zhao YF, Tian KG, Hu XX, Li N. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163. Int J Biol Sci, 2019, 15(2): 481-492. |
[46] | Chen L, Lin YL, Peng GQ, Li F. Structural basis for multifunctional roles of mammalian aminopeptidase N. Proc Natl Acad Sci USA, 2012, 109(44): 17966-17971. |
[47] | Luo L, Wang SH, Zhu L, Fan BC, Liu T, Wang LF, Zhao PP, Dang YN, Sun P, Chen JW, Zhang YH, Chang XJ, Yu ZY, Wang HN, Guo RL, Li B, Zhang K. Aminopeptidase N-null neonatal piglets are protected from transmissible gastroenteritis virus but not porcine epidemic diarrhea virus. Sci Rep, 2019, 9(1): 13186. |
[48] | Zhang J, Wu ZF, Yang HQ. Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection. Virol Sin, 2019, 34(5): 592-595. |
[49] | Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res, 2019, 28(1): 21-32. |
[50] | Stoian A, Rowland RRR, Petrovan V, Sheahan M, Samuel MS, Whitworth KM, Wells KD, Zhang JQ, Beaton B, Cigan M, Prather RS. The use of cells from ANPEP knockout pigs to evaluate the role of aminopeptidase N (APN) as a receptor for porcine deltacoronavirus (PDCoV). Virology, 2020, 541: 136-140. |
[51] | Xu K, Zhou YR, Mu YL, Liu ZG, Hou SH, Xiong YJ, Fang LR, Ge CL, Wei YH, Zhang XL, Xu CJ, Che JJ, Fan ZY, Xiang GM, Guo JK, Shang HT, Li H, Xiao SB, Li JL, Li K. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife, 2020, 9: e57132. |
[52] | Wang X, Li YF, Li LF, Shen L, Zhang LK, Yu JH, Luo YZ, Sun Y, Li S, Qiu HJ. RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus. Antiviral Res, 2016, 128: 49-56. |
[53] | Xie ZC, Pang DX, Yuan HM, Jiao HP, Lu C, Wang KK, Yang QB, Li MJ, Chen X, Yu TT, Chen XR, Dai Z, Peng YN, Tang XC, Li ZJ, Wang TD, Guo HC, Li L, Tu CC, Lai LX, Ouyang HS. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog, 2018, 14(12): e1007193. |
[54] | Lu C, Pang DX, Li MJ, Yuan HM, Yu TT, Huang PX, Li JN, Chen X, Jiao HP, Xie ZC, Ouyang HS. CRISPR/ Cas9-mediated hitchhike expression of functional shRNAs at the porcine miR-17-92 cluster. Cells, 2019, 8(2): 113. |
[55] | Wang N, Zhao DM, Wang JL, Zhang YL, Wang M, Gao Y, Li F, Wang JF, Bu ZG, Rao ZH, Wang XX. Architecture of African swine fever virus and implications for viral assembly. Science, 2019, 366(6465): 640-644. |
[56] | Sánchez-Torres C, Gómez-Puertas P, Gómez-del-Moral M, Alonso F, Escribano JM, Ezquerra A, Dominguez J. Expression of porcine CD163 on monocytes/ macrophages correlates with permissiveness to African swine fever infection. Arch Virol, 2003, 148(12): 2307-2323. |
[57] | Popescu L, Gaudreault NN, Whitworth KM, Murgia MV, Nietfeld JC, Mileham A, Samuel M, Wells KD, Prather RS, Rowland RRR. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology, 2017, 501: 102-106. |
[58] | Song RG, Wang Y, Zheng QT, Yao J, Cao CW, Wang YF, Zhao JG. One-step base editing in multiple genes by direct embryo injection for pig trait improvement. Sci China Life Sci, 2022, 65(4): 739-752. |
[59] | Lunney JK. Advances in swine biomedical model genomics. Int J Biol Sci, 2007, 3(3): 179-184. |
[60] | Walters EM, Wolf E, Whyte JJ, Mao JD, Renner S, Nagashima H, Kobayashi E, Zhao JG, Wells KD, Critser JK, Riley LK, Prather RS. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics, 2012, 5: 55. |
[61] | Bailey AM, Mendicino M, Au P. An FDA perspective on preclinical development of cell-based regenerative medicine products. Nat Biotechnol, 2014, 32(8): 721-723. |
[62] | Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, Chow W, Eory L, Finlayson HA, Flicek P, Girón CG, Griffin DK, Hall R, Hannum G, Hourlier T, Howe K, Hume DA, Izuogu O, Kim K, Koren S, Liu HB, Manchanda N, Martin FJ, Nonneman DJ, O'Connor RE, Phillippy AM, Rohrer GA, Rosen BD, Rund LA, Sargent CA, Schook LB, Schroeder SG, Schwartz AS, Skinner BM, Talbot R, Tseng E, Tuggle CK, Watson M, Smith TPL, Archibald AL. An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience, 2020, 9(6): giaa051. |
[63] | Wang HY, Wu S, Capecchi MR, Jaenisch R. A brief review of genome editing technology for generating animal models. Front Agr Sci Eng, 2020, 7(2): 123-128. |
[64] | Karch CM, Cruchaga C, Goate AM. Alzheimer's disease genetics: from the bench to the clinic. Neuron, 2014, 83(1): 11-26. |
[65] | Kragh PM, Nielsen AL, Li J, Du YT, Lin L, Schmidt M, Bøgh IB, Holm IE, Jakobsen JE, Johansen MG, Purup S, Bolund L, Vajta G, Jørgensen AL. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res, 2009, 18(4): 545-558. |
[66] | Jakobsen JE, Johansen MG, Schmidt M, Dagnæs- Hansen F, Dam K, Gunnarsson A, Liu Y, Kragh PM, Li R, Holm IE, Callesen H, Mikkelsen JG, Nielsen AL, Jørgensen AL. Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res, 2013, 22(4): 709-723. |
[67] | Jakobsen JE, Johansen MG, Schmidt M, Liu Y, Li R, Callesen H, Melnikova M, Habekost M, Matrone C, Bouter Y, Bayer TA, Nielsen AL, Duthie M, Fraser PE, Holm IE, Jørgensen AL. Expression of the Alzheimer's disease mutations AβPP695sw and PSEN1M146I in double-transgenic gottingen minipigs. J Alzheimers Dis, 2016, 53(4): 1617-1630. |
[68] | Lee SE, Hyun H, Park MR, Choi Y, Son YJ, Park YG, Jeong SG, Shin MY, Ha HJ, Hong HS, Choi MK, Im GS, Park EW, Kim YH, Park C, Kim EY, Park SP. Production of transgenic pig as an Alzheimer's disease model using a multi-cistronic vector system. PLoS One, 2017, 12(6): e0177933. |
[69] | Yang DS, Wang CE, Zhao BT, Li W, Ouyang Z, Liu ZM, Yang HQ, Fan P, O'Neill A, Gu WW, Yi H, Li SH, Lai LX, Li XJ. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet, 2010, 19(20): 3983-3994. |
[70] | Yan S, Tu ZC, Liu ZM, Fan NN, Yang HM, Yang S, Yang WL, Zhao Y, Ouyang Z, Lai CD, Yang HQ, Li L, Liu QS, Shi H, Xu GQ, Zhao H, Wei HJ, Pei Z, Li SH, Lai LX, Li XJ. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease. Cell, 2018, 173(4): 989-1002.e13. |
[71] | Yao J, Huang JJ, Hai T, Wang XL, Qin GS, Zhang HY, Wu R, Cao CW, Xi JJ, Yuan ZQ, Zhao JG. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep, 2014, 4: 6926. |
[72] | Wang XL, Cao CW, Huang JJ, Yao J, Hai T, Zheng QT, Wang X, Zhang HY, Qin GS, Cheng JB, Wang YF, Yuan ZQ, Zhou Q, Wang HM, Zhao JG. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep, 2016, 6: 20620. |
[73] | Zhou XQ, Xin JG, Fan NN, Zou QJ, Huang J, Ouyang Z, Zhao Y, Zhao BT, Liu ZM, Lai SS, Yi XL, Guo L, Esteban MA, Zeng YZ, Yang HQ, Lai LX. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci, 2015, 72(6): 1175-1184. |
[74] | Zhu XX, Zhong YZ, Ge YW, Lu KH, Lu SS. CRISPR/ Cas9-mediated generation of Guangxi Bama minipigs harboring three mutations in α-synuclein causing Parkinson's disease. Sci Rep, 2018, 8(1): 12420. |
[75] | Crociara P, Chieppa MN, Vallino Costassa E, Berrone E, Gallo M, Lo Faro M, Pintore MD, Iulini B, D'Angelo A, Perona G, Botter A, Formicola D, Rainoldi A, Paulis M, Vezzoni P, Meli F, Peverali FA, Bendotti C, Trolese MC, Pasetto L, Bonetto V, Lazzari G, Duchi R, Perota A, Lagutina I, Quadalti C, Gennero MS, Dezzutto D, Desiato R, Boido M, Ghibaudi M, Valentini MC, Caramelli M, Galli C, Casalone C, Corona C. Motor neuron degeneration, severe myopathy and TDP-43 increase in a transgenic pig model of SOD1-linked familiar ALS. Neurobiol Dis, 2019, 124: 263-275. |
[76] | Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, Bouzek DC, Abou Alaiwa MH, Hoegger MJ, Ludwig PS, Taft PJ, Wallen TJ, Wohlford-Lenane C, McMenimen JD, Chen JH, Bogan KL, Adam RJ, Hornick EE, Nelson GA, Hoffman EA, Chang EH, Zabner J, McCray PB, Prather RS, Meyerholz DK, Welsh MJ. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest, 2013, 123(6): 2685-2693. |
[77] | Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, Rogan MP, Davis GJ, Dohrn CL, Wohlford-Lenane C, Taft PJ, Rector MV, Hornick E, Nassar BS, Samuel M, Zhang YP, Richter SS, Uc A, Shilyansky J, Prather RS, McCray PB, Zabner J, Welsh MJ, Stoltz DA. The ΔF 508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med, 2011, 3(74): 74ra24. |
[78] | Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol, 2008, 295(2): L240-L263. |
[79] | Rogers CS, Hao YH, Rokhlina T, Samuel M, Stoltz DA, Li YH, Petroff E, Vermeer DW, Kabel AC, Yan ZY, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS. Production of CFTR-null and CFTR- DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest, 2008, 118(4): 1571-1577. |
[80] | Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmüller H, Walter MC, Wolf E. Dystrophin- deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet, 2013, 22(21): 4368-4382. |
[81] | Yu HH, Zhao H, Qing YB, Pan WR, Jia BY, Zhao HY, Huang XX, Wei HJ. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int J Mol Sci, 2016, 17(10): 1668. |
[82] | Dorado B, Pløen GG, Barettino A, Macías A, Gonzalo P, Andrés-Manzano MJ, González-Gómez C, Galán-Arriola C, Alfonso JM, Lobo M, López-Martín GJ, Molina A, Sánchez-Sánchez R, Gadea J, Sánchez-González J, Liu Y, Callesen H, Filgueiras-Rama D, Ibáñez B, Sørensen CB, Andrés V. Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discov, 2019, 5: 16. |
[83] | Hickey RD, Mao SA, Glorioso J, Lillegard JB, Fisher JE, Amiot B, Rinaldo P, Harding CO, Marler R, Finegold MJ, Grompe M, Nyberg SL. Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease. Stem Cell Res, 2014, 13(1): 144-153. |
[84] | Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight, 2020, 5(20): e141523. |
[85] | Chen JH, An BY, Yu B, Peng XH, Yuan HM, Yang QB, Chen X, Yu TT, Wang LY, Zhang XW, Wang H, Zou XD, Pang DX, Ouyang HS, Tang XC. CRISPR/Cas9- mediated knockin of human factor IX into swine factor IX locus effectively alleviates bleeding in hemophilia B pigs. Haematologica, 2021, 106(3): 829-837. |
[86] | Hai T, Teng F, Guo RF, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res, 2014, 24(3): 372-375. |
[87] | Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med, 1996, 154(5): 1229-1256. |
[88] | Grubb BR, Boucher RC. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev, 1999, 79(1Suppl): S193-S214. |
[89] | Dalkilic I, Kunkel LM. Muscular dystrophies: genes to pathogenesis. Curr Opin Genet Dev, 2003, 13(3): 231-238. |
[90] | Wells DJ. Tracking progress: an update on animal models for Duchenne muscular dystrophy. Dis Model Mech, 2018, 11(6): dmm035774. |
[91] | Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech, 2018, 11(1): dmm030783. |
[92] | Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, Baehr A, Schneider CM, Sinnecker D, Klett K, Fröhlich T, Rahman FA, Haufe T, Sun S, Jurisch V, Kessler B, Hinkel R, Dirschinger R, Martens E, Jilek C, Graf A, Krebs S, Santamaria G, Kurome M, Zakhartchenko V, Campbell B, Voelse K, Wolf A, Ziegler T, Reichert S, Lee S, Flenkenthaler F, Dorn T, Jeremias I, Blum H, Dendorfer A, Schnieke A, Krause S, Walter MC, Klymiuk N, Laugwitz KL, Wolf E, Wurst W, Kupatt C. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med, 2020, 26(2): 207-214. |
[93] | Hickey RD, Lillegard JB, Fisher JE, McKenzie TJ, Hofherr SE, Finegold MJ, Nyberg SL, Grompe M. Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology, 2011, 54(4): 1351-1359. |
[94] | Watson AL, Carlson DF, Largaespada DA, Hackett PB, Fahrenkrug SC. Engineered swine models of cancer. Front Genet, 2016, 7: 78. |
[95] | Luo YL, Li J, Liu Y, Lin L, Du YT, Li ST, Yang HM, Vajta G, Callesen H, Bolund L, Sørensen CB. High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res, 2011, 20(5): 975-988. |
[96] | Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N, Cui XX, Kurome M, Zakhartchenko V, Kessler B, Wieland H, Rottmann O, Schmid RM, Schneider G, Kind A, Wolf E, Saur D, Schnieke A. A porcine model of familial adenomatous polyposis. Gastroenterology, 2012, 143(5): 1173-1175.e7. |
[97] | Kang JT, Ryu J, Cho B, Lee EJ, Yun YJ, Ahn S, Lee J, Ji DY, Lee K, Park KW. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reprod Domest Anim, 2016, 51(6): 970-978. |
[98] | Wang KP, Jin Q, Ruan DG, Yang Y, Liu QS, Wu H, Zhou ZW, Ouyang Z, Liu ZM, Zhao Y, Zhao BT, Zhang QJ, Peng JY, Lai CD, Fan NN, Liang YH, Lan T, Li N, Wang XS, Wang XL, Fan Y, Doevendans PA, Sluijter JPG, Liu PT, Li XP, Lai LX. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res, 2017, 27(12): 2061-2071. |
[99] | Saalfrank A, Janssen KP, Ravon M, Flisikowski K, Eser S, Steiger K, Flisikowska T, Müller-Fliedner P, Schulze É, Brönner C, Gnann A, Kappe E, Böhm B, Schade B, Certa U, Saur D, Esposito I, Kind A, Schnieke A. A porcine model of osteosarcoma. Oncogenesis, 2016, 5(3): e210. |
[100] | Schook LB, Collares TV, Hu WP, Liang Y, Rodrigues FM, Rund LA, Schachtschneider KM, Seixas FK, Singh K, Wells KD, Walters EM, Prather RS, Counter CM. A genetic porcine model of cancer. PLoS One, 2015, 10(7): e0128864. |
[101] | Sieren JC, Meyerholz DK, Wang XJ, Davis BT, Newell JD, Hammond E, Rohret JA, Rohret FA, Struzynski JT, Goeken JA, Naumann PW, Leidinger MR, Taghiyev A, Van Rheeden R, Hagen J, Darbro BW, Quelle DE, Rogers CS. Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest, 2014, 124(9): 4052-4066. |
[102] | Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E, Wünsch A, Kessler B, Kurome M, Bähr A, Klymiuk N, Krebs S, Puk O, Nagashima H, Graw J, Blum H, Wanke R, Wolf E. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes, 2013, 62(5): 1505-1511. |
[103] | Cho B, Kim SJ, Lee EJ, Ahn SM, Lee JS, Ji DY, Lee K, Kang JT. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system. Transgenic Res, 2018, 27(3): 289-300. |
[104] | Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H. Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res, 2009, 18(5): 697-706. |
[105] | Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, Göke B, Pfeifer A, Wanke R, Wolf E. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes, 2010, 59(5): 1228-1238. |
[106] | Zou XD, Ouyang HS, Yu TT, Chen X, Pang DX, Tang XC, Chen CZ. Preparation of a new type 2 diabetic miniature pig model via the CRISPR/Cas9 system. Cell Death Dis, 2019, 10(11): 823. |
[107] | Kong SY, Ruan JX, Xin LL, Fan JH, Xia JH, Liu ZG, Mu YL, Yang SL, Li K. Multi-transgenic minipig models exhibiting potential for hepatic insulin resistance and pancreatic apoptosis. Mol Med Rep, 2016, 13(1): 669-680. |
[108] | Zhang KY, Tao C, Xu JP, Ruan JX, Xia JH, Zhu WJ, Xin LL, Ye HQ, Xie N, Xia BC, Li CX, Wu TW, Wang YF, Schroyen M, Xiao XH, Fan JG, Yang SL. CD8(+) T cells involved in metabolic inflammation in visceral adipose tissue and liver of transgenic pigs. Front Immunol, 2021, 12: 690069. |
[109] | Wei JY, Ouyang HS, Wang YH, Pang DX, Cong NX, Wang TD, Leng BF, Li D, Li XP, Wu R, Ding Y, Gao F, Deng YH, Liu B, Li ZY, Lai LX, Feng HH, Liu G, Deng XM. Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J, 2012, 279(1): 91-99. |
[110] | Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du YT, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med, 2013, 5(166): 166ra1. |
[111] | Fang B, Ren XY, Wang Y, Li Z, Zhao LH, Zhang ML, Li C, Zhang ZW, Chen L, Li XX, Liu JY, Xiong Q, Zhang LN, Jin Y, Liu XR, Li L, Wei H, Yang HY, Li RF, Dai YF. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech, 2018, 11(10): dmm036632. |
[112] | Davis BT, Wang XJ, Rohret JA, Struzynski JT, Merricks EP, Bellinger DA, Rohret FA, Nichols TC, Rogers CS. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One, 2014, 9(4): e93457. |
[113] | Huang L, Hua ZD, Xiao HW, Cheng Y, Xu K, Gao Q, Xia Y, Liu Y, Zhang X, Zheng XM, Mu YL, Li K. CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget, 2017, 8(23): 37751-37760. |
[114] | Wang Y, Du YN, Shen B, Zhou XY, Li J, Liu Y, Wang JY, Zhou JK, Hu B, Kang NN, Gao JM, Yu LQ, Huang XX, Wei H. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep, 2015, 5: 8256. |
[115] | Lu HX, Liu J, Feng T, Guo ZH, Yin YJ, Gao F, Cao GS, Du XG, Wu S. A HIT-trapping strategy for rapid generation of reversible and conditional alleles using a universal donor. Genome Res, 2021, 31(5): 900-909. |
[116] | Tang WD, Wang YC, Qi XL, Gu FX, Li KL, Han HT, Du XG, Zhu ZX, Wu S, Zhao YF, Zheng HX.A genome-scale screen reveals ANTXR1, Heparan sulfate and Neu5Gc as host factors mediating seneca valley virus entry into porcine cells.2022.06.14.496051 |
[117] | Lu TY, Yang BC, Wang RL, Qin C. Xenotransplantation: current status in preclinical research. Front Immunol, 2020, 10: 3060. |
[118] | Perkel JM. Xenotransplantation makes a comeback. Nat Biotechnol, 2016, 34(1): 3-4. |
[119] | Iwase H, Kobayashi T. Current status of pig kidney xenotransplantation. Int J Surg, 2015, 23(Pt B):229-233. |
[120] | Ezzelarab M, Garcia B, Azimzadeh A, Sun HT, Lin CC, Hara H, Kelishadi S, Zhang TS, Lin YJ, Tai HC, Wagner R, Thacker J, Murase N, McCurry K, Barth RN, Ayares D, Pierson RN, Cooper DKC. The innate immune response and activation of coagulation in alpha1,3- galactosyltransferase gene-knockout xenograft recipients. Transplantation, 2009, 87(6): 805-812. |
[121] | Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M, Weldon E, Lawson N, Deterville C, Dieter RA, Sullivan B, Boulton G, Parent B, Piper G, Sommer P, Cawthon S, Duggan E, Ayares D, Dandro A, Fazio-Kroll A, Kokkinaki M, Burdorf L, Lorber M, Boeke JD, Pass H, Keating B, Griesemer A, Ali NM, Mehta SA, Stewart ZA. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med, 2022, 386(20): 1889-1898. |
[122] | Porrett PM, Orandi BJ, Kumar V, Houp J, Anderson D, Cozette Killian A, Hauptfeld-Dolejsek V, Martin DE, Macedon S, Budd N, Stegner KL, Dandro A, Kokkinaki M, Kuravi KV, Reed RD, Fatima H, Killian JT, Baker G, Perry J, Wright ED, Cheung MD, Erman EN, Kraebber K, Gamblin T, Guy L, George JF, Ayares D, Locke JE. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant, 2022, 22(4): 1037-1053. |
[123] | Nellore A, Fishman JA. Donor-derived infections and infectious risk in xenotransplantation and allotransplantation. Xenotransplantation, 2018, 25(4): e12423. |
[124] | Adams AB, Lovasik BP, Faber DA, Burlak C, Breeden C, Estrada JL, Reyes LM, Vianna RM, Tector MF, Tector AJ. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation. Ann Surg, 2021, 274(3): 473-480. |
[125] | Wang LR, Cooper DKC, Burdorf L, Wang Y, Iwase H. Overcoming coagulation dysregulation in pig solid organ transplantation in nonhuman primates: recent progress. Transplantation, 2018, 102(7): 1050-1058. |
[126] | Cooper DKC, Hara H, Iwase H, Yamamoto T, Jagdale A, Kumar V, Mannon RB, Hanaway MJ, Anderson DJ, Eckhoff DE. Clinical pig kidney xenotransplantation: how close are we? J Am Soc Nephrol, 2020, 31(1): 12-21. |
[127] | Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai YF, Ayares DL. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science, 2003, 299(5605): 411-414. |
[128] | Lai LX, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 2002, 295(5557): 1089-1092. |
[129] | Byrne G, Ahmad-Villiers S, Du ZJ, McGregor C. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. Xenotransplantation, 2018, 25(5): e12394. |
[130] | Tector AJ, Mosser M, Tector M, Bach JM. The possible role of anti-Neu5Gc as an obstacle in xenotransplantation. Front Immunol, 2020, 11: 622. |
[131] | Li P, Walsh JR, Lopez K, Isidan A, Zhang WJ, Chen AM, Goggins WC, Higgins NG, Liu JY, Brutkiewicz RR, Smith LJ, Hara H, Cooper DKC, Ekser B. Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses. Sci Rep, 2021, 11(1): 13131. |
[132] | Jagdale A, Nguyen H, Li J, Burnette K, Ayares D, Cooper DKC, Hara H. Does expression of a human complement-regulatory protein on xenograft cells protect them from systemic complement activation? Int J Surg, 2020, 83: 184-188. |
[133] | Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas ML, Lewis BGT, Eckhaus M, Dabkowski NL, Belli AJ, Reimann KA, Ayares D, Horvath KA. Role of anti-CD40 antibody-mediated costimulation blockade on non-Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon model. Xenotransplantation, 2014, 21(1): 35-45. |
[134] | Martínez-Alarcón L, Liarte S, Quereda JJ, Sáez-Acosta A, de Torre-Minguela C, Mendonça L, Abellaneda JM, Majado MJ, Ríos A, Ramírez P, Muñoz A, Ramis G. Profiling human CD55 transgene performance assist in selecting best suited specimens and tissues for swine organ xenotransplantation. Biology (Basel), 2021, 10(8): 747. |
[135] | Iwase H, Ekser B, Hara H, Phelps C, Ayares D, Cooper DKC, Ezzelarab MB. Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation, 2014, 21(1): 72-83. |
[136] | Ji HC, Li X, Yue SQ, Li JJ, Chen H, Zhang ZC, Ma B, Wang J, Pu M, Zhou L, Feng C, Wang DS, Duan JL, Pan DK, Tao KS, Dou KF. Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model. Cell Physiol Biochem, 2015, 36(1): 233-249. |
[137] | Iwase H, Ezzelarab MB, Ekser B, Cooper DKC. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation, 2014, 21(3): 201-220. |
[138] | Navarro-Alvarez N, Yang YG. CD47: a new player in phagocytosis and xenograft rejection. Cell Mol Immunol, 2011, 8(4): 285-288. |
[139] | Forte P, Baumann BC, Weiss EH, Seebach JD. HLA-E expression on porcine cells: protection from human NK cytotoxicity depends on peptide loading. Am J Transplant, 2005, 5(9): 2085-2093. |
[140] | Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan YN, Shrock E, Lesha E, Wang G, Luo YL, Qing YB, Jiao DL, Zhao H, Zhou XY, Wang SQ, Wei H, Güell M, Church GM, Yang LH. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 2017, 357(6357): 1303-1307. |
[141] | Cooper DKC. The 2021 IXA Keith Reemtsma Lecture: moving xenotransplantation to the clinic. Xenotransplantation, 2022, 29(2): e12723. |
[1] | 朱医高, 李军, 逄越, 李庆伟. 七鳃鳗:生物进化和疾病研究的重要模式动物[J]. 遗传, 2020, 42(9): 847-857. |
[2] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[3] | 黄耀强,李国玲,杨化强,吴珍芳. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646. |
[4] | 陈一欧, 宝颖, 马华峥, 伊宗裔, 周卓, 魏文胜. 基因编辑技术及其在中国的研究发展[J]. 遗传, 2018, 40(10): 900-915. |
[5] | 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望[J]. 遗传, 2018, 40(10): 858-873. |
[6] | 李爽,杨圆圆,邱艳,陈彦好,徐璐薇,丁秋蓉. 基因组编辑技术在精准医学中的应用[J]. 遗传, 2017, 39(3): 177-188. |
[7] | 佟彬, 张立, 李光鹏. 中国肉牛分子与基因修饰育种研究进展[J]. 遗传, 2017, 39(11): 984-1015. |
[8] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[9] | 张丹,宋海娜,程浩,喻德跃. 大豆耐低磷相关基因的定位与克隆[J]. 遗传, 2015, 37(4): 336-343. |
[10] | 李辉辉 黄萍 董巍 朱作言 刘东. 斑马鱼研究走向生物医学[J]. 遗传, 2013, 35(4): 410-420. |
[11] | 辛胜昌,赵艳秋,李松,林硕,仲寒冰. 斑马鱼模型在药物筛选中的应用[J]. 遗传, 2012, 34(9): 1144-1152. |
[12] | 胡又佳,朱宝泉. 顶头孢霉遗传育种研究进展[J]. 遗传, 2011, 33(10): 1079-1086. |
[13] | 尹佟明. 林木基因组及功能基因克隆研究概述[J]. 遗传, 2010, 32(7): 677-684. |
[14] | 尹海芳,王秋菊,李宁. 基因敲除鼠疾病模型的研究进展[J]. 遗传, 2002, 24(4): 463-469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: