遗传 ›› 2020, Vol. 42 ›› Issue (9): 898-915.doi: 10.16288/j.yczz.20-190
周俊1, 赵成成1, 吴霄1, 石俊松2, 周荣2, 吴珍芳1, 李紫聪1()
收稿日期:
2020-06-22
修回日期:
2020-08-11
出版日期:
2020-09-20
发布日期:
2020-08-31
通讯作者:
李紫聪
E-mail:lizicongcong@163.com
作者简介:
周俊,在读硕士研究生,专业方向:动物遗传育种与繁殖。E-mail: 基金资助:
Jun Zhou1, Chengcheng Zhao1, Xiao Wu1, Junsong Shi2, Rong Zhou2, Zhenfang Wu1, Zicong Li1()
Received:
2020-06-22
Revised:
2020-08-11
Online:
2020-09-20
Published:
2020-08-31
Contact:
Li Zicong
E-mail:lizicongcong@163.com
Supported by:
摘要:
同一来源的供体细胞之间存在异质性。许多研究已经表明体细胞核移植(somatic cell nuclear transfer, SCNT)效率与供体细胞有关。然而,鲜有在单细胞水平分析供体细胞异质性对核移植效率的潜在影响。本研究利用单细胞转录组测序技术对同一来源且随机挑选的52个猪耳组织成纤维细胞进行测序分析。结果表明有48个单细胞的基因表达模式相似,4个单细胞(编号为D11_1、D12_1、DW61_2和DW99_2)的基因表达模式与其他单细胞存在较大的差异,并且不存在基因表达模式完全相同的两个单细胞。以基因表达模式相似的48个单细胞作为对照,进一步分析了单细胞D11_1、D12_1、DW61_2和DW99_2的差异基因表达模式:首先利用R语言筛选4个单细胞的差异表达基因,并对前50差异表达基因进行汇总;然后对差异表达基因进行GO富集分析和KEGG通路分析。富集分析发现差异表达基因的主要分子功能包括能量代谢、蛋白质代谢和细胞对刺激的反应等;主要通路包括KEGG中富集的与细胞周期、细胞代谢、DNA复制相关的通路。根据以上研究结果并结合SCNT研究进展讨论了4个单细胞的差异基因表达模式对核移植胚胎发育效率的潜在影响。本研究揭示了猪耳组织成纤维细胞的转录组异质性,并提供了分析精英供体细胞的一种有效方法,为提高克隆效率带来新的思路。
周俊, 赵成成, 吴霄, 石俊松, 周荣, 吴珍芳, 李紫聪. 猪耳成纤维细胞转录组异质性及对核移植胚胎发育的潜在影响[J]. 遗传, 2020, 42(9): 898-915.
Jun Zhou, Chengcheng Zhao, Xiao Wu, Junsong Shi, Rong Zhou, Zhenfang Wu, Zicong Li. Transcriptome heterogeneity of porcine ear fibroblast and its potential influence on embryo development in nuclear transplantation[J]. Hereditas(Beijing), 2020, 42(9): 898-915.
表1
扩增成功并测序的单细胞样品"
序号 | 样品编号 | 序号 | 样品编号 | 序号 | 样品编号 |
---|---|---|---|---|---|
1 | D1_1 | 19 | D31_1 | 37 | DW22_2 |
2 | D1_3 | 20 | D32_3 | 38 | DW24_1 |
3 | D8_2 | 21 | D33_1 | 39 | DW31_1 |
4 | D9_2 | 22 | D36_3 | 40 | DW36_1 |
5 | D11_1 | 23 | D37_3 | 41 | DW36_2 |
6 | D12_1 | 24 | D40_2 | 42 | DW41_2 |
7 | D12_2 | 25 | D40_3 | 43 | DW45_1 |
8 | D13_1 | 26 | D43_3 | 44 | DW45_2 |
9 | D18_3 | 27 | D44_1 | 45 | DW58_2 |
10 | D20_1 | 28 | D45_3 | 46 | DW61_1 |
11 | D21_1 | 29 | D48_1 | 47 | DW61_2 |
12 | D22_1 | 30 | D52_3 | 48 | DW69_1 |
13 | D23_3 | 31 | D63_1 | 49 | DW69_2 |
14 | D25_1 | 32 | D63_2 | 50 | DW73-1 |
15 | D26_1 | 33 | D64_1 | 51 | DW99_1 |
16 | D27_1 | 34 | D66_1 | 52 | DW99_2 |
17 | D28_1 | 35 | DW16_1 | ||
18 | D28_2 | 36 | DW22_1 |
表2
D11_1前50个差异最显著的基因信息"
基因 | 基因全称 | 表达情况 |
---|---|---|
TMEM198 | Transmembrane protein 198 | ↑ |
ALDOB | Aldolase, fructose-bisphosphate B | ↑ |
UMOD | Uromodulin | ↑ |
ASS1 | Argininosuccinate synthase 1 | ↑ |
SLC5A12 | Solute carrier family 5 member 12 | ↑ |
SLC34A1 | Sus scrofa solute carrier family 34 member 1 (SLC34A1), mRNA | ↑ |
AGR2 | Anterior gradient protein 2 homolog precursor | ↑ |
U6 | U6 spliceosomal RNA | ↑ |
BHMT | Betaine-homocysteine S-methyltransferase 1 | ↑ |
DDC | Dopa decarboxylase | ↑ |
DAO | D-amino-acid oxidase | ↑ |
SLC13A3 | Solute carrier family 13 member 3 | ↑ |
CDH16 | Cadherin 16 | ↑ |
CYP2D25 | Vitamin D(3) 25-hydroxylase | ↑ |
PPARGC1B | PPARG coactivator 1 beta | ↑ |
FBP1 | Fructose-1,6-bisphosphatase 1 | ↑ |
G6PC | Glucose-6-phosphatase | ↑ |
CLDN2 | Claudin-2 | ↑ |
DMGDH | Dimethylglycine dehydrogenase | ↑ |
FMO1 | Dimethylaniline monooxygenase [N-oxide-forming] 1 | ↑ |
UPP2 | Uridine phosphorylase 2 | ↑ |
CYP4A24 | Sus scrofa cytochrome P450,family 4,subfamily A,polypeptide 21 (CYP4A21), mRNA | ↑ |
HNF4A | Hepatocyte nuclear factor 4-alpha | ↑ |
ADSL | Adenylosuccinate lyase | ↓ |
IGFBP6 | Insulin-like growth factor-binding protein 6 precursor | ↓ |
ORMDL2 | ORMDL sphingolipid biosynthesis regulator 2 | ↓ |
MRPS35 | Mitochondrial ribosomal protein S35 | ↓ |
TM7SF3 | Transmembrane 7 superfamily member 3 | ↓ |
DERA | Deoxyribose-phosphate aldolase | ↓ |
LTBR | Tumor necrosis factor receptor superfamily member 3 precursor | ↓ |
TULP3 | Tubby like protein 3 | ↓ |
PPHLN1 | Periphilin 1 | ↓ |
PUS7L | Pseudouridylate synthase 7 like | ↓ |
SLC38A1 | Solute carrier family 38 member 1 | ↓ |
NEDD1 | Neural precursor cell expressed, developmentally down-regulated 1 | ↓ |
SELENOO | Sus scrofa selenoprotein O (SELENOO), mRNA | ↓ |
SLC35B3 | Solute carrier family 35 member B3 | ↓ |
FAM8A1 | Family with sequence similarity 8 member A1 | ↓ |
MBOAT1 | Membrane bound O-acyltransferase domain containing 1 | ↓ |
novel gene | Lysosomal thioesterase PPT2 precursor | ↓ |
MAN2A2 | Mannosidase alpha class 2A member 2 | ↓ |
HMG20A | High mobility group 20A | ↓ |
CSPG4 | Chondroitin sulfate proteoglycan 4 | ↓ |
SRP54 | Signal recognition particle 54 | ↓ |
FOS | Proto-oncogene c-Fos | ↓ |
SPTLC2 | Serine palmitoyltransferase long chain base subunit 2 | ↓ |
ATXN3 | Ataxin-3 | ↓ |
表3
D12_1前50个差异最显著的基因概况"
基因 | 基因全称 | 表达情况 |
---|---|---|
PARVG | Gamma-parvin | ↑ |
POU3F1 | POU class 3 homeobox 1 | ↑ |
ASS1 | Argininosuccinate synthase 1 | ↑ |
UMOD | Uromodulin | ↑ |
PNMA2 | Paraneoplastic Ma antigen 2 | ↑ |
ADGRG7 | Adhesion G protein-coupled receptor G7 | ↑ |
KRT28 | Keratin 28 | ↑ |
GSDMB | Gasdermin B | ↑ |
U6 | U6 spliceosomal RNA | ↑ |
RNF223 | Ring finger protein 223 | ↑ |
TBX10 | T-box 10 | ↑ |
TMPRSS2 | Transmembrane protease, serine 12 | ↑ |
HTR1E | 5-hydroxytryptamine receptor 1E | ↑ |
HIC2 | HIC ZBTB transcriptional repressor 2 | ↑ |
SLC34A1 | Sus scrofa solute carrier family 34 member 1 (SLC34A1), mRNA. | ↑ |
ALDOB | Aldolase, fructose-bisphosphate B | ↑ |
CSN1S1 | Sus scrofa casein alpha s1 (CSN1S1), mRNA. | ↑ |
SLC2A12 | Solute carrier family 2 member 12 | ↑ |
CD53 | CD53 molecule | ↑ |
NAGA | Alpha-N-acetylgalactosaminidase precursor | ↓ |
ADSL | Adenylosuccinate lyase | ↓ |
C12orf4 | Homolog isoform 2 | ↓ |
SLC35B3 | Solute carrier family 35 member B3 | ↓ |
LEMD2 | LEM domain containing 2 | ↓ |
GOLGA5 | Golgin A5 | ↓ |
GSTA4 | Glutathione S-transferase A4 | ↓ |
FAM98C | Family with sequence similarity 98 member C | ↓ |
LDLRAP1 | Low density lipoprotein receptor adaptor protein 1 | ↓ |
PLK3 | Polo like kinase 3 | ↓ |
SMOC2 | SPARC related modular calcium binding 2 | ↓ |
SPG21 | Sus scrofa spastic paraplegia 21 (autosomal recessive, Mast syndrome) (SPG21), mRNA | ↓ |
PCLAF | Sus scrofa PCNA-associated factor (LOC100514810), mRNA | ↓ |
SERPIN2 | Serpin family B member 2 | ↓ |
AEN | Apoptosis enhancing nuclease | ↓ |
GCNT1 | Glucosaminyl (N-acetyl) transferase 1, core 2 | ↓ |
PPP6C | Serine/threonine-protein phosphatase 6 catalytic subunit | ↓ |
PCSK6 | Proprotein convertase subtilisin/kexin type 6 | ↓ |
BOP1 | Block of proliferation 1 | ↓ |
FAM49B | Protein FAM49B | ↓ |
PLAT | Tissue-type plasminogen activator precursor | ↓ |
SMOX | Spermine oxidase | ↓ |
ASPN | Asporin precursor | ↓ |
IL1R1 | Interleukin 1 receptor type 1 | ↓ |
表4
DW61_2前50个差异最显著的基因概况"
基因 | 基因全称 | 表达情况 |
---|---|---|
NPPB | Natriuretic peptides B Brain natriuretic peptide 32 Brain natriuretic peptide 26 | ↑ |
GRIK2 | Glutamate ionotropic receptor kainate type subunit 2 | ↑ |
PAX1 | Paired box 1 | ↑ |
DOK5 | Docking protein 5 | ↑ |
ANKR2 | Ankyrin repeat domain 2 | ↑ |
SLC114 | Solute carrier family 16 member 14 | ↑ |
GPR37 | G protein-coupled receptor 37 | ↑ |
TRPV2 | Transient receptor potential cation channel subfamily V member 2 | ↑ |
RHCE | Sus scrofa Rh blood group CcEe antigens (RHCE), mRNA. | ↑ |
MFNG | MFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase | ↑ |
UBAPL | Ubiquitin associated protein 1 like | ↑ |
ASPG | Asparaginase | ↑ |
CRYBA1 | Crystallin beta A1 | ↑ |
RECQL | ATP-dependent DNA helicase Q1 | ↓ |
RIMKLB | Ribosomal modification protein rimK like family member B | ↓ |
C1R | Complement C1r | ↓ |
WASHC4 | WASH complex subunit 4 | ↓ |
GNPTAB | N-acetylglucosamine-1-phosphate transferase alpha and beta subunits | ↓ |
SELENOO | Sus scrofa selenoprotein O (SELENOO), mRNA. | ↓ |
MAN2A2 | Mannosidase alpha class 2A member 2 | ↓ |
STRA6 | Stimulated by retinoic acid 6 | ↓ |
ISLR | Immunoglobulin superfamily containing leucine rich repeat | ↓ |
HECTD1 | HECT domain E3 ubiquitin protein ligase 1 | ↓ |
C14orf119 | Chromosome 14 open reading frame 119 | ↓ |
NFAT5 | Nuclear factor of activated T-cells 5 | ↓ |
E2F4 | E2F transcription factor 4 | ↓ |
INPP5B | Inositol polyphosphate-5-phosphatase B | ↓ |
SMOC2 | SPARC related modular calcium binding 2 | ↓ |
MTHFD1L | Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1 like | ↓ |
LATS1 | Large tumor suppressor kinase 1 | ↓ |
ME2 | Malic enzyme 2 | ↓ |
TRIP4 | Thyroid hormone receptor interactor 4 | ↓ |
LEO1 | LEO1 homolog, Paf1/RNA polymerase II complex component | ↓ |
VPS39 | VPS39, HOPS complex subunit | ↓ |
DPP8 | Dipeptidyl peptidase 8 | ↓ |
HACD3 | 3-hydroxyacyl-CoA dehydratase 3 | ↓ |
PRPF39 | Pre-mRNA processing factor 39 | ↓ |
表5
DW99_2前50个差异最显著的基因概况"
基因 | 基因全称 | 表达情况 |
---|---|---|
GBX2 | Gastrulation brain homeobox 2 | ↑ |
PCDH12 | Protocadherin 12 | ↑ |
ARHGEF9 | Cdc42 guanine nucleotide exchange factor 9 | ↑ |
TRAM1L1 | Translocation associated membrane protein 1-like 1 | ↑ |
U6 | U6 spliceosomal RNA | ↑ |
DMTN | Dematin actin binding protein | ↑ |
CEP72 | Centrosomal protein 72 | ↑ |
YBX2 | Y-box binding protein 2 | ↑ |
ZNF768 | Zinc finger protein 768 | ↑ |
NOTCH4 | Neurogenic locus notch homolog protein 4 precursor | ↑ |
GARNL3 | GTPase activating Rap/RanGAP domain like 3 | ↑ |
MTBP | MDM2 binding protein | ↑ |
UHRF1 | Ubiquitin like with PHD and ring finger domains 1 | ↑ |
PACSIN2 | Protein kinase C and casein kinase substrate in neurons 2 | ↑ |
EP300 | E1A binding protein p300 | ↓ |
ADSL | Adenylosuccinate lyase | ↓ |
PWP1 | PWP1 homolog, endonuclein | ↓ |
IGFBP6 | Insulin-like growth factor-binding protein 6 precursor | ↓ |
MMP19 | Matrix metallopeptidase 19 | ↓ |
ESYT1 | Extended synaptotagmin 1 | ↓ |
SMARCC2 | SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 2 | ↓ |
PTGES3 | Prostaglandin E synthase 3 | ↓ |
MON2 | MON2 homolog, regulator of endosome-to-Golgi trafficking | ↓ |
XPOT | Exportin for tRNA | ↓ |
TMEM19 | Transmembrane protein 19 | ↓ |
TBC1D15 | TBC1 domain family member 15 | ↓ |
DNM1L | Dynamin 1 like | ↓ |
FAR2 | Fatty acyl-CoA reductase 2 | ↓ |
ARNTL2 | Aryl hydrocarbon receptor nuclear translocator like 2 | ↓ |
TM7SF3 | Transmembrane 7 superfamily member 3 | ↓ |
FGFR1OP2 | FGFR1 oncogene partner 2 | ↓ |
AEBP2 | AE binding protein 2 | ↓ |
LRP6 | LDL receptor related protein 6 | ↓ |
C1R | Complement C1r | ↓ |
NOP2 | Sus scrofa NOP2 nucleolar protein (NOP2), mRNA | ↓ |
[1] |
Wilmut I, Schnieke AE, Mcwhir J, Kind AJ, Campbell KH . Viable offspring derived from fetal and adult mammalian cells. Nature, 1997,385(6619):810-813.
doi: 10.1038/385810a0 pmid: 9039911 |
[2] |
Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, de León FAP, Robl JM. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998,280(5367):1256-1258.
pmid: 9596577 |
[3] |
Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC . Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000,289(5482):1188-1190.
pmid: 10947985 |
[4] |
Liu Z, Cai YJ, Wang Y, Nie YH, Zhang CC, Xu YT, Zhang XT, Lu Y, Wang ZY, Poo M, Sun Q . Cloning of macaque monkeys by somatic cell nuclear transfer. Cell, 2018,172(4):881-887.
doi: 10.1016/j.cell.2018.01.020 pmid: 29395327 |
[5] |
Beyhan Z, Iager AE, Cibelli JB . Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell, 2007,1(5):502-512.
doi: 10.1016/j.stem.2007.10.009 |
[6] | Niemann H, Lucas-Hahn A . Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod Domest Anim, 2012,47(Suppl. 5):2-10. |
[7] |
Tachibana M, Amato P, Sparman M, Gutierrez N M, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee H S, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S . Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 2013,153(6):1228-1238.
doi: 10.1016/j.cell.2013.05.006 |
[8] |
Ao Z, Wu X, Zhou J, Gu T, Wang XW, Shi JS, Zhao CF, Cai GY, Zheng EQ, Liu DW, Wu ZF, Li ZC . Cloned pig fetuses exhibit fatty acid deficiency from impaired placental transport. Mol Reprod Dev, 2019,86(11):1569-1581.
pmid: 31347235 |
[9] |
Liu Y, Li J, Løvendahl P, Schmidt M, Larsen K, Callesen H . In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets. Reprod Fertil Dev, 2015,27(3):429-439.
doi: 10.1071/RD13329 pmid: 25482653 |
[10] |
Jang G, Park ES, Cho JK, Bhuiyan MM, Lee BC, Kang SK, Hwang WS . Preimplantational embryo development and incidence of blastomere apoptosis in bovine somatic cell nuclear transfer embryos reconstructed with long-term cultured donor cells. Theriogenology, 2004,62(3-4):512-521.
pmid: 15226007 |
[11] | Zhang DF, Liu D, Tang LL, Wang Y, Chen Y, Wang K, Wang GL, Schellander K, Cailu L . Effects of different donor cells on the development of nuclear-trans-ferred porcine embryos. Hereditas(Beijing), 2007,29(2):211-217. |
张德福, 刘东, 汤琳琳, 王英, 陈茵, 王凯, 王根林 , KARL Schellander, LIN Cailu. 不同供体细胞及其处理对猪核移植重构胚体外发育的影响. 遗传, 2007,29(2):211-217. | |
[12] |
Ruan ZY, Zhao X, Li ZD, Qin XL, Shao QM, Ruan QY, Deng YF, Jiang JR, Huang B, Lu FH, Shi DS . Effect of sex differences in donor foetal fibroblast on the early development and DNA methylation status of buffalo (Bubalus bubalis) nuclear transfer embryos. Reprod Domest Anim, 2019,54(1):11-22.
doi: 10.1111/rda.13286 pmid: 30051521 |
[13] |
Rideout WR, Eggan K, Jaenisch R . Nuclear cloning and epigenetic reprogramming of the genome. Science, 2001,293(5532):1093-1098.
doi: 10.1126/science.1063206 pmid: 11498580 |
[14] | Yang XQ, Wu ZF, Li ZC . Advances in epigenetic reprogramming of somatic cells nuclear transfer in mammals. Hereditas(Beijing), 2019,41(12):1099-1109. |
杨旭琼, 吴珍芳, 李紫聪 . 哺乳动物体细胞核移植表观遗传重编程研究进展. 遗传, 2019,41(12):1099-1109. | |
[15] |
Zhai YH, Li W, Zhang ZR, Cao YQ, Wang ZZ, Zhang S, Li ZY . Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs. Mol Reprod Dev, 2018,85(1):26-37.
doi: 10.1002/mrd.22935 pmid: 29205617 |
[16] |
Yamanaka S . Elite and stochastic models for induced pluripotent stem cell generation. Nature, 2009,460(7251):49-52.
doi: 10.1038/nature08180 pmid: 19571877 |
[17] |
Inoue K, Ogonuki N, Mochida K, Yamamoto Y, Takano K, Kohda T, Ishino F, Ogura A . Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol Reprod, 2003,69(4):1394-1400.
doi: 10.1095/biolreprod.103.017731 pmid: 12801984 |
[18] |
Zhou C, Zhang JC, Zhang M, Wang DB, Ma Y, Wang Y, Wang YZ, Huang YM, Zhang Y . Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos. Faseb J, 2020,34(1):1637-1651.
doi: 10.1096/fj.201900578RR pmid: 31914649 |
[19] |
Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R . Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc, 2014,9(1):171-181.
doi: 10.1038/nprot.2014.006 pmid: 24385147 |
[20] |
Grubman A, Chew G, Ouyang JF, Sun GZ, Choo XY, Mclean C, Simmons RK, Buckberry S, Vargas-Landin DB, Poppe D, Pflueger J, Lister R, Rackham O, Petretto E, Polo JM . A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type- specific gene expression regulation. Nat Neurosci, 2019,22(12):2087-2097
pmid: 31768052 |
[21] |
Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NN, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao K , Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009,6(5):377-382.
doi: 10.1038/nmeth.1315 pmid: 19349980 |
[22] |
Kim D, Langmead B, Salzberg SL . HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015,12(4):357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142 |
[23] |
Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG . DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010,26(1):136-138.
doi: 10.1093/bioinformatics/btp612 |
[24] |
Young MD, Wakefield MJ, Smyth GK, Oshlack A . Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol, 2010,11(2):R14.
doi: 10.1186/gb-2010-11-2-r14 pmid: 20132535 |
[25] |
Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[26] |
Navin N, Hicks J . Future medical applications of single-cell sequencing in cancer. Genome Med, 2011,3(5):31.
pmid: 21631906 |
[27] |
Novick A, Weiner M . Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA, 1957,43(7):553-566.
pmid: 16590055 |
[28] |
Coskun AF, Eser U, Islam S . Cellular identity at the single-cell level. Mol Biosyst, 2016,12(10):2965-2979.
doi: 10.1039/c6mb00388e pmid: 27460751 |
[29] |
Menon M, Mohammadi S, Davila-Velderrain J, Goods BA, Cadwell TD, Xing Y, Stemmer-Rachamimov A, Shalek AK, Love JC, Kellis M, Hafler BP . Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun, 2019,10(1):4902.
pmid: 31653841 |
[30] |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S . Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007,131(5):861-872.
doi: 10.1016/j.cell.2007.11.019 pmid: 18035408 |
[31] |
Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K . Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA, 2008,105(8):2883-2888.
doi: 10.1073/pnas.0711983105 pmid: 18287077 |
[32] |
Polo JM, Liu S, Figueroa M E, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li YS, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K . Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol, 2010,28(8):848-855.
doi: 10.1038/nbt.1667 pmid: 20644536 |
[33] |
Lai L, Tao T, Macháty Z, Kühholzer B, Sun QY, Park KW, Day BN, Prather RS . Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biol Reprod, 2001,65(5):1558-1564.
doi: 10.1095/biolreprod65.5.1558 pmid: 11673275 |
[34] |
Chesné P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP . Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol, 2002,20(4):366-369.
doi: 10.1038/nbt0402-366 pmid: 11923842 |
[35] |
Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G . Ubiquitin tag for sperm mitochondria. Nature, 1999,402(6760):371-372.
doi: 10.1038/46466 pmid: 10586873 |
[36] |
Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC . Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000,289(5482):1188-1190.
doi: 10.1126/science.289.5482.1188 pmid: 10947985 |
[37] |
Gupta S, Sahu D, Bomalaski JS, Frank I, Boorjian SA, Thapa P, Cheville J C, Hansel DE . Argininosuccinate Synthetase-1 (ASS1) loss in high-grade neuroendocrine carcinomas of the urinary bladder: implications for targeted therapy with ADI-PEG 20. Endocr Pathol, 2018,29(3):236-241.
doi: 10.1007/s12022-018-9516-9 pmid: 29453600 |
[38] |
Moren L, Perryman R, Crook T, Langer JK, Oneill K, Syed N, Antti H . Metabolomic profiling identifies distinct phenotypes for ASS1 positive and negative GBM. BMC Cancer, 2018,18(1):167.
pmid: 29422017 |
[39] |
Bang J, Lee E, Lee AR, Il Lee J, Choi SH, Seol D, Park C, Lee DR . The effect of cell penetrating peptide-conjugated coactivator-associated arginine methyltransferase 1 (CPP-CARM1) on the cloned mouse embryonic development. Sci Rep, 2018,8(1):16721.
doi: 10.1038/s41598-018-35077-0 pmid: 30425285 |
[40] |
Abdel-Hady AE, Beige J, Kreutz R, Bolbrinker J . Effect of UMOD genotype on long-term graft survival after kidney transplantation in patients treated with cyclosporine-based therapy. Pharmacogenomics J, 2018,18(2):227-231.
pmid: 28418009 |
[41] |
Bailie C, Kilner J, Maxwell AP, Mcknight AJ . Development of next generation sequencing panel for UMOD and association with kidney disease. PLoS One, 2017,12(6):e0178321.
doi: 10.1371/journal.pone.0178321 pmid: 28609449 |
[42] |
Davis D, Kannan M, Wattenberg B . Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul, 2018,70:3-18.
doi: 10.1016/j.jbior.2018.08.002 pmid: 30193828 |
[43] |
Fava RA, Browning JL, Gatumu M, Skarstein K, Bolstad AI . LTBR-pathway in Sjogren's syndrome: CXCL13 levels and B-cell-enriched ectopic lymphoid aggregates in NOD mouse lacrimal glands are dependent on LTBR. Adv Exp Med Biol, 2011,691:383-390.
doi: 10.1007/978-1-4419-6612-4_39 pmid: 21153342 |
[44] |
Zhu QQ, Li N, Li F, Sang J, Deng H, Han QY, Lv Y, Li CY, Liu ZW . Association of LTBR polymorphisms with chronic hepatitis B virus infection and hepatitis B virus-related hepatocellular carcinoma. Int Immunopharmacol, 2017,49:126-131.
doi: 10.1016/j.intimp.2017.05.031 pmid: 28575727 |
[45] |
Sia D, Losic B, Moeini A, Cabellos L, Hao K, Revill K, Bonal D, Miltiadous O, Zhang ZY, Hoshida Y, Cornella H, Castillo-Martin M, Pinyol R, Kasai Y, Roayaie S, Thung S N, Fuster J, Schwartz ME, Waxman S, Cordon-Cardo C, Schadt E, Mazzaferro V, Llovet JM . Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun, 2015,6:6087.
doi: 10.1038/ncomms7087 pmid: 25608663 |
[46] |
Chung YG, Matoba S, Liu YT, Eum JH, Lu FL, Jiang W, Lee JE, Sepilian V, Cha KY, Lee DR, Zhang Y . Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell, 2015,17(6):758-766.
doi: 10.1016/j.stem.2015.10.001 pmid: 26526725 |
[47] |
Boone PM, Yuan B, Gu S, Ma ZW, Gambin T, Gonzaga-Jauregui C, Jain M, Murdock TJ, White JJ, Jhangiani SN, Walker K, Wang QY, Muzny DM, Gibbs RA, Hejtmancik JF, Lupski JR, Posey JE, Lewis RA . Hutterite-type cataract maps to chromosome 6p21.32- p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med, 2016,4(1):77-94.
doi: 10.1002/mgg3.181 pmid: 26788539 |
[48] | Mcgee LJ, Jiang AL, Lan Y. Golga5 is dispensable for mouse embryonic development and postnatal survival.Genesis, 2017, 55(7): 10. 1002/dvg. 23039. |
[49] |
O'Grady GL, Best HA, Sztal TE, Schartner V, Sanjuan-Vazquez M, Donkervoort S, Abath NO, Sutton RB, Ilkovski B, Romero NB, Stojkovic T, Dastgir J, Waddell L B, Boland A, Hu Y, Williams C, Ruparelia AA, Maisonobe T, Peduto AJ, Reddel SW, Lek M, Tukiainen T, Cummings BB, Joshi H, Nectoux J, Brammah S, Deleuze JF, Ing VO, Ramm G, Ardicli D, Nowak KJ, Talim B, Topaloglu H, Laing NG, North K N, Macarthur DG, Friant S, Clarke NF, Bryson-Richardson RJ, Bönnemann CG, Laporte J, Cooper ST,. Variants in the oxidoreductase PYROXD1 cause early-onset myopathy with internalized nuclei and myofibrillar disorganization. Am J Hum Genet, 2016,99(5):1086-1105.
doi: 10.1016/j.ajhg.2016.09.005 pmid: 27745833 |
[50] |
Al-Dabbagh N, Al-Shahrani H, Al-Dohayan N, Mustafa M, Arfin M, Al-Asmari AK . The SPARC-related modular calcium binding protein 2 (SMOC2) gene polymorphism in primary glaucoma: a case-control study. Clin Ophthalmol, 2017,11:549-555.
doi: 10.2147/OPTH.S126459 pmid: 28356709 |
[51] |
Huang XQ, Zhou ZQ, Zhang XF, Chen CL, Tang Y, Zhu Q, Zhang JH, Xia JC . Overexpression of SMOC2 attenuates the tumorigenicity of hepatocellular carcinoma cells and is associated with a positive postoperative prognosis in human hepatocellular carcinoma. J Cancer, 2017,8(18):3812-3827.
doi: 10.7150/jca.20775 pmid: 29151969 |
[52] |
Hagan N, Guarente J, Ellisor D, Zervas M . The temporal contribution of the Gbx2 lineage to cerebellar neurons. Front Neuroanat, 2017,11:50.
doi: 10.3389/fnana.2017.00050 pmid: 28785208 |
[53] |
Mallika C, Guo QX, Li JYH . Gbx2 is essential for maintaining thalamic neuron identity and repressing habenular characters in the developing thalamus. Dev Biol, 2015,407(1):26-39.
doi: 10.1016/j.ydbio.2015.08.010 pmid: 26297811 |
[54] |
Alber M, Kalscheuer VM, Marco E, Sherr E, Lesca G, Till M, Gradek G, Wiesener A, Korenke C, Mercier S, Becker F, Yamamoto T, Scherer SW, Marshall CR, Walker S, Dutta UR, Dalal A B, Suckow V, Jamali P, Kahrizi K, Najmabadi H, Minassian BA . ARHGEF9 disease: Phenotype clarification and genotype-phenotype correlation. Neurol Genet, 2017,3(3):e148.
doi: 10.1212/NXG.0000000000000148 pmid: 28589176 |
[55] |
Klein KM, Pendziwiat M, Eilam A, Gilad R, Blatt I, Rosenow F, Kanaan M, Helbig I, Afawi Z . The phenotypic spectrum of ARHGEF9 includes intellectual disability, focal epilepsy and febrile seizures. J Neurol, 2017,264(7):1421-1425.
doi: 10.1007/s00415-017-8539-3 pmid: 28620718 |
[56] |
Li HS, Song MM, Yang W, Cao P, Zheng L, Zuo YC . A Comparative analysis of single-cell transcriptome identifies reprogramming driver factors for efficiency improvement. Molecular Therapy - Nucleic Acids, 2020,19:1053-1064.
doi: 10.1016/j.omtn.2019.12.035 pmid: 32045876 |
[57] |
Inoue K, Ogonuki N, Mochida K, Yamamoto Y, Takano K, Kohda T, Ishino F, Ogura A . Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol Reprod, 2003,69(4):1394-1400.
doi: 10.1095/biolreprod.103.017731 pmid: 12801984 |
[58] |
Xie BT, Zhang H, Wei RY, Li QN, Weng XG, Kong QR, Liu ZH . Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction, 2016,151(1):9-16.
doi: 10.1530/REP-15-0338 pmid: 26515777 |
[59] |
Matoba S, Liu YT, Lu FL, Iwabuchi KA, Shen L, Inoue A, Zhang Y . Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 2014,159(4):884-895.
doi: 10.1016/j.cell.2014.09.055 |
[60] |
Liu Y, Wu FR, Zhang L, Wu XQ, Li DK, Xin J, Xie J, Kong F, Wang WY, Wu QQ, Zhang D, Wang R, Gao SR, Li WY . Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing. BMC Genomics, 2018,19(1):734.
doi: 10.1186/s12864-018-5091-1 pmid: 30305014 |
[1] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[2] | 曾焙枰, 许红恩, 毛璐, 汤文学. 遗传性耳聋分子诊断及梯级检测策略应用[J]. 遗传, 2023, 45(1): 29-41. |
[3] | 李亚楠, 张贤君, 张宁, 梁雅琳, 张宇星, 招华兴, 李紫聪, 黄思秀. 过表达组蛋白H3K9me3去甲基化酶对猪克隆胚胎发育的影响[J]. 遗传, 2023, 45(1): 67-77. |
[4] | 高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[5] | 宋绍征, 何正义, 成勇, 于宝利, 张婷, 李丹. TALENs介导MSTN基因突变山羊的制备及性能分析[J]. 遗传, 2022, 44(6): 531-542. |
[6] | 唐湘薇, 楚丹, 颜赛娜, 尹艳飞, 卞桥, 翁波, 陈斌, 冉茂良. miR-191靶向BDNF基因通过激活PI3K/AKT信号通路促进猪未成熟支持细胞增殖[J]. 遗传, 2021, 43(7): 680-693. |
[7] | 周子文, 王雪, 丁向东. 基于高密度SNP标记估计群体间遗传关联[J]. 遗传, 2021, 43(4): 340-349. |
[8] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[9] | 王卓, 申笑涵, 施奇惠. 单细胞基因组测序技术新进展及其在生物医学中的应用[J]. 遗传, 2021, 43(2): 108-117. |
[10] | 魏强, 奥岩, 杨漫漫, 陈涛, 韩虎, 张兴举, 王然, 夏秋菊, 姜芳芳, 李勇. 利用全基因组重测序技术鉴定五指山猪GHR突变体转基因插入位点[J]. 遗传, 2021, 43(12): 1149-1158. |
[11] | 韩程程, 夏凯, 龚茹莹, 吴栩涵, 张蕾, 梁新乐. 适于检测非洲猪瘟病毒的点亮Spinach-p54 RNA适配体的设计及应用[J]. 遗传, 2021, 43(12): 1170-1178. |
[12] | 邢宝松, 王璟, 陈俊峰, 马强, 任巧玲, 张家庆, 张华, 滑留帅, 孙加节, 曹海. 去势和非去势公猪背最长肌circRNA差异表达分析[J]. 遗传, 2021, 43(11): 1066-1077. |
[13] | 任巧玲, 张家庆, 陆东锋, 王璟, 陈俊峰, 马强, 白献晓, 郭红霞, 高彬文, 邢宝松. 乏情和发情初产母猪下丘脑-垂体-卵巢轴中lincRNAs表达谱比较分析[J]. 遗传, 2020, 42(4): 388-402. |
[14] | 屈亮, 李素, 仇华吉. 单细胞RNA测序技术在病毒研究中的应用[J]. 遗传, 2020, 42(3): 269-277. |
[15] | 张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: