[1] | 游修龄 . 我国水稻品种资源的历史考证. 农业考古, 1981(2):2-12. | [2] | 广东省农业科学院. 广东水稻矮化育种的主要经验. 中国农业科学, 1965,6(1):19-24. | [3] | Peng S, Cassman KG, Virmani SS, Sheehy J, Khush GS . Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999,39(6):1552-1559. | [4] | Gu F, Zhang H , W J, Zhang H. Study on inheritance of dwarf character and its utilization in rice( Oryza sativa L.) breeding. Jiangsu J Agr Sci, 2003,19(1):48-54. | [4] | 谷福林, 翟虎渠, 万建民, 张红生 . 水稻矮秆性状研究及矮源育种利用. 江苏农业学报, 2003,19(1):48-54. | [5] | Wu B, Hu W, Ayaad M, Liu H, Xing Y . Intragenic recombination between two non-functional semi-dwarf 1 alleles produced a functional SD1 allele in a tall recombinant inbred line in rice. PLoS One, 2017,12(12):e0190116. | [6] | Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd NP, Fu X . Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018,560(7720):595-600. | [7] | Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA . Heterosis. Plant Cell, 2010,22(7):2105-2112. | [8] | 袁隆平 . 水稻的雄性不孕性. 科学通报, 1966,17(4):185-188. | [9] | Yuan LP . Hybrid rice in China. Chin J Rice Sci, 1986,1(1):8-18. | [9] | 袁隆平 . 中国的杂交水稻. 杂交水稻, 1986,1(1):8-18. | [10] | 谢华安, 郑家团, 张受刚 . 籼型杂交水稻汕优63及其恢复系明恢63的选育研究. 福建农业学报, 1987(1):32-38 | [11] | Ren GJ, Yan LA, Xie HA . Retrospective and perspective on indica three-line hybrid rice breeding research in China. Chin Sci Bull, 2016,61(35):3748-3760. | [11] | 任光俊, 颜龙安, 谢华安 . 三系杂交水稻育种研究的回顾与展望. 科学通报, 2016,61(35):3748-3760. | [12] | 袁隆平 . 杂交水稻的育种战略设想. 杂交水稻, 1987(1):1-2. | [13] | 李实蕡 . 冈型及D型杂交稻的选育、利用和遗传研究. 杂交水稻, 1997(S1):1-25. | [14] | 周坤炉 . 籼型杂交水稻三系不育系选育. 杂交水稻, 1994,3(Z1):22-26. | [15] | Wang WM, Wen HC, Yuan GL, Wan XQ, Zhu YC . Breeding of and studies on k-type hybrid rice. Hybrid Rice, 1996(6):13-15. | [15] | 王文明, 文宏灿, 袁国良, 万先齐, 朱永川 . K型杂交水稻的选育与研究. 杂交水稻, 1996(6):13-15. | [16] | Yang ZY . Retrospects and prospects on the development of japonica hybrid rice in the north of china. Acta Agronom Sin , 1998,24(6):840-846. | [16] | 杨振玉 . 北方杂交粳稻发展的思考与展望. 作物学报, 1998,24(6):840-846. | [17] | Tang SZ, Zhang HG, Liang GH, Yan CJ, Liu QQ, Gu MH . Reasons and countermeasures of slow development on three-line japonica hybrid rice. Hybrid Rice, 2008,23(1):1-5. | [17] | 汤述翥, 张宏根, 梁国华, 严长杰, 刘巧泉, 顾铭洪 . 三系杂交粳稻发展缓慢的原因及对策. 杂交水稻, 2008,23(1):1-5. | [18] | Tan XL, Tan YL, Zhao YH, Zhang XM, Hong RK, Jin SL, Liu XR, Huang DJ . Identification of the Rf gene conferring fertility restoration of the CMS Dian-type 1 in rice by using simple sequence repeat markers and advanced inbred lines of restorer and maintainer. Plant Breed, 2010,123(4):338-341. | [19] | Zhang ZG, Yuan SC, Xu CZ . The influence of photoperiod on the fertility changes of Hubei photo- sensitive genic male-sterile rice (HPGMR). Chin J Rice Sci, 1987,1(3):137-143. | [20] | Chen L, Zhou G, Yu X . Effects of temperature and photoperiod on fertility and physiological activities of rice annong S-1 and Hengnong S-1. Acta Bot Sin, 1994,36(Suppl.):119-123. | [21] | Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L, Feng M, Qin P, Hu X, Song C, Shi J, Song X, Ni E, Wu X, Deng Q, Liu Z, Chen M, Liu YG, Cao X, Zhuang C . RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun , 2014,5:4884. | [22] | Wu J, Deng QY, Yuan DY, Shaowu QI . Progress of super hybrid rice research in China. Chin Sci Bull, 2016(35):3787-3796. | [23] | Ikehashi H, Araki H . Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Japan J Breed, 1984,34(3):304-313. | [24] | Lü CG, Zou JS . Theory and practice on breeding of two-line hybrid rice, Liangyoupeijiu. Sci Agric Sin, 2016,49(9):1635-1645. | [24] | 吕川根, 邹江石 . 两系法杂交稻两优培九育种的理论与实践. 中国农业科学, 2016,49(9):1635-1645. | [25] | Shen XH, Chen SG, Cao LY, Zhan XD, Chen DB, Wu WM, Cheng SH . Construction of genetic linkage map based on a RIL population derived from super hybrid rice, XY9308. Mol Plant Breed, 2008,6(5):861-866. | [25] | 沈希宏, 陈深广, 曹立勇, 占小登, 陈代波, 吴伟明, 程式华 . 超级杂交稻协优9308重组自交系的分子遗传图谱构建. 分子植物育种, 2008,6(5):861-866. | [26] | Wei HH, Jiang YH, Zhao K, Xu JW, Zhang HC, Dai QG, Huo ZY, Xu K, Wei HY, Zheng F . Characteristics of super-high yield population in Yongyou series of hybrid rice. Acta Agron Sin, 2013,39(12):2201-2210. | [26] | 韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞 . 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013,39(12):2201-2210. | [27] | 林建荣, 吴明国, 宋昕蔚, 阮关海 . 籼粳亚种间高产杂交水稻新组合春优658. 杂交水稻, 2009,24(5):84-85. | [28] | Khush GS . What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005,59(1):1-6. | [29] | Yang SR, Chen WF, Zhang LB . Trends in breeding rice for ideotype. Chin J Rice Sci, 1988,2(3):129-135. | [30] | 袁隆平 . 杂交水稻超高产育种. 杂交水稻, 1997(6):1-6. | [31] | Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J . Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010,42(6):541-544. | [32] | Zhang Q . Strategies for developing Green Super Rice. Mol Plant Breed, 2005,3(5):601-602. | [32] | 张启发 . 绿色超级稻培育的设想. 分子植物育种, 2005,3(5):601-602. | [33] | Zhang Q . Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007,104(42):16402-16409. | [34] | Wing RA, Purugganan MD, Zhang Q . The rice genome revolution: from an ancient grain to Green Super Rice. Nat Rev Genet, 2018,19:505-517. | [35] | Yu H, Xie W, Li J, Zhou F, Zhang Q . A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014,12(1):28-37. | [36] | Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, Delacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT . Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants, 2018,4(1):23-29. | [37] | 陈浩, 林拥军, 张启发 . 转基因水稻研究的回顾与展望. 科学通报, 2009,54(18):2699-2717. | [38] | Tu JM, Zhang GA, Datta K, Xu CG, He YQ, Zhang QF, Khush GS, Datta SK . Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol, 2000,18(10):1101-1104. | [39] | Wang FQ, Wang SQ, Li SC, Zhang KZ, Li P . Research progress on herbicide resistant transgenic rice and its safety issues. Mol Plant Breed, 2006,4(6):846-852. | [39] | 吴发强, 王世全, 李双成, 张楷正, 李平 . 抗除草剂转基因水稻的研究进展及其安全性问题. 分子植物育种, 2006,4(6):846-852. | [40] | Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308. | [41] | Zhu Z, Verma N, González F, Shi ZD, Huangfu D . A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep, 2015,4(6):1103-1111. | [42] | Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C . Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2016,2(10):16139. | [43] | Hsu PD, lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome manipulations. Cell, 2014,157(6):1262-1278. | [44] | Miki D, Zhang W, Zeng W, Feng Z, Zhu JK . CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun, 2018,9(1):1967. | [45] | Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhang Y, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Lu Y, Zhang LS, Yu Z, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Zhang Y, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B . Sequence and analysis of rice chromosome 4. Nature, 2002,420(6913):316-320. | [46] | Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T . The genome sequence and structure of rice chromosome 1. Nature, 2002,420(6913):312-316. | [47] | Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C . Rice functional genomics research: past decade and future. Mol Plant, 2018,11(3):359-380. | [48] | Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu YG . A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet, 2013,45(5):573-577. | [49] | Tang H, Luo D, Zhou D, Zhang Q, Tian D, Zheng X, Chen L, Liu YG . The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol Plant, 2014,7(9):1497-1500. | [50] | Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu YG . Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006,18(3):676-687. | [51] | Peng XJ, Wang K, Hu CF, Zhu YL, Wang T, Yang J, Tong JP, Li SQ, Zhu YG . The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biol, 2010,10:125. | [52] | Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, Zhu Y, Li S . ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. New Phytol, 2013,198(2):408-418. | [53] | Hu J, Zhu RS, Li S, Li Y, Yu J, Huang W, Zhu Y . Discovery, utilization and perspective of Honglian cytoplasmic male sterile rice. Chin Sci Bull, 2016,61(35):3813-3821. | [53] | 胡骏, 朱仁山, 李绍清, 李阳生, 余金洪, 黄文超, 朱英国 . 红莲型细胞质雄性不育的发现利用研究及展望. 科学通报, 2016,61(35):3813-3821. | [54] | Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyers BC, Zhang Q . PMS1T, producing phased small- interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA, 2016,113(52):15144-15149. | [55] | Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q . A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA, 2012,109(7):2654-2659. | [56] | Zhou H, Liu QJ, Li J, Jiang DG, Zhou LY, Wu P, Lu S, Li F, Zhu LY, Liu ZL, Chen LT, Liu YG, Zhuang CX . Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res, 2012,22(4):649-660. | [57] | Ding J, Shen J, Mao H, Xie W, Li X, Zhang Q . RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Mol Plant, 2012,5(6):1210-1216. | [58] | Ikehashi H, Araki H . Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Japan J Breed, 1984,34(3):304-313. | [59] | Yang J, Zhao X, Cheng K, Du H, Ouyang Y, Chen J, Qiu S, Huang J, Jiang Y, Jiang L, Ding J, Wang J, Xu C, Li X, Zhang Q . A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science, 2012,337(6100):1336-1340. | [60] | Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, Zhang Q . A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica- japonica hybrids in rice. Proc Natl Acad Sci USA, 2008,105(32):11436-11441. | [61] | Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L, Wu H, Liu YG . Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008,105(48):18871-18876. | [62] | Yu X, Zhao Z, Zheng X, Zhou J, Kong W, Wang P, Bai W, Zheng H, Zhang H, Li J, Liu J, Wang Q, Zhang L, Liu K, Yu Y, Guo X, Wang J, Lin Q, Wu F, Ren Y, Zhu S, Zhang X, Cheng Z, Lei C, Liu S, Liu X, Tian Y, Jiang L, Ge S, Wu C, Tao D, Wang H, Wan J . A selfish genetic element confers non-Mendelian inheritance in rice. Science, 2018,360(6393):1130-1132. | [63] | Yamagata Y, Yamamoto E, Aya K, Win KT, Doi K, Sobrizal, Ito T, Kanamori H, Wu J, Matsumoto T, Matsuoka M, Ashikari M, Yoshimura A . Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc Natl Acad Sci USA, 2010, 107(4): 1494-1499. | [64] | Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M . Cytokinin oxidase regulates rice grain production. Science, 2005,309(5735):741-745. | [65] | Botella JR . Can heterotrimeric G proteins help to feed the world? Trends Plant Sci, 2012,17(10):563-568. | [66] | Zuo J, Li J . Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 2014,48:99-118. | [67] | Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X . Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009,41(4):494-497. | [68] | Bai X, Huang Y, Hu Y, Liu H, Zhang B, Smaczniak C, Hu G, Han Z, Xing Y . Duplication of an upstream silencer of FZP increases grain yield in rice. Nat Plant, 2017,3(11):885-893. | [69] | Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Wang Z, Han B . An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013,25(9):3360-3376. | [70] | Gu B, Zhou T, Luo J, Liu H, Wang Y, Shangguan Y, Zhu J, Li Y, Sang T, Wang Z, Han B . An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant, 2015,8(11):1635-1650. | [71] | Hua L, Wang DR, Tan L, Fu Y, Liu F, Xiao L, Zhu Z, Fu Q, Sun X, Gu P, Cai H, Mccouch SR, Sun C . LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell, 2015,27(7):1875-1888. | [72] | Jin J, Hua L, Zhu Z, Tan L, Zhao X, Zhang W, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Sun C . GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016,28(10):2453-2463. | [73] | Zha X, Luo X, Qian X, He G, Yang M, Li Y, Yang J . Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J, 2009,7(7):611-620. | [74] | He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J . Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res, 2006,16(5):618-626. | [75] | Luo JJ, Hao W, Jin J, Gao JP, Lin HX . Fine mapping of Spr3, a locus for spreading panicle from African cultivated rice(Oryza glaberrima Steud.). Mol Plant, 2008,1(5):830-838. | [76] | Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M . OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet, 2013, 45(4): 462-465, 465e1-2. | [77] | Zhang T, Li Y, Ma L, Sang X, Ling Y, Wang Y, Yu P, Zhuang H, Huang J, Wang N, Zhao F, Zhang C, Yang Z, Fang L, He G . LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc Natl Acad Sci USA, 2017,114(37):9984-9989. | [78] | Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q . GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112(6):1164-1171. | [79] | Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107(45):19579-19584. | [80] | Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X . G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018,9(1):852. | [81] | Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q . A G-protein pathway determines grain size in rice. Nat Commun, 2018,9(1):851. | [82] | Song XJ, Huang W, Shi M, Zhu M, Lin HX . A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39(5):623-630. | [83] | Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z . Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008,40(11):1370-1374. | [84] | Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q . Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43(12):1266-1269. | [85] | Xu C, Liu Y, Li Y, Xu X, Xu C, Li X, Xiao J, Zhang Q . Differential expression of GS5 regulates grain size in rice. J Exp Bot, 2015,66(9):2611-2623. | [86] | Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J . Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18(12):1199-1209. | [87] | Wan XY, Weng JF, Zhai HQ, Wang JK, Lei CL, Liu XL, Guo T, Jiang LJ, Su N, Wan JM . Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008,179(4):2239-2252. | [88] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40(8):1023-1028. | [89] | Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J . GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043. | [90] | Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y . Corrigendum: Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2016,2:15203. | [91] | Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C . Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015,2:15195. | [92] | Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q . A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8(10):1455-1465. | [93] | Sun P, Zhang W, Wang Y, He Q, Shu F, Liu H, Wang J, Wang J, Yuan L, Deng H . OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58(10):836-847. | [94] | Hu Z, He H, Zhang S, Sun F, Xin X, Wang W, Qian X, Yang J, Luo X . A Kelch motif-containing serine/ threonine protein phosphatase determines the large grain QTL trait in rice. J Integr Plant Biol, 2012,54(12):979-990. | [95] | Qi P, Lin Y, Song X, Shen J, Huang W, Shan J, Zhu M, Jiang L, Gao J, Lin H . The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22(12):1666-1680. | [96] | Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H . Rare allele of OsPPKL1 associated with grain length causes extra- large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012,109(52):21534-21539. | [97] | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45(6):707-711. | [98] | Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44(8):950-954. | [99] | Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47(8):944-948. | [100] | Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X . The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47(8):949-954. | [101] | Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B . OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016,48(4):447-456. | [102] | Spielmeyer W, Ellis MH, Chandler PM . Semidwarf 1(sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002,99(13):9043-9048. | [103] | Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS . A mutant gibberellin- synthesis gene in rice. Nature, 2002,416:701-702. | [104] | Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M . Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed Sci, 2007,57(1):53-58. | [105] | Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M . Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA, 2011, 108(27): 11034-11039. | [106] | Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M . OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010,42(6):545-549. | [107] | Zhang L, Yu H, Ma B, Liu G, Wang J, Wang J, Gao R, Li J, Liu J, Xu J, Zhang Y, Li Q, Huang X, Xu J, Li J, Qian Q, Han B, He Z, Li J . A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun, 2017,8:14789. | [108] | Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX . Genetic control of rice plant architecture under domestication. Nat Genet, 2008,40(11):1365-1369. | [109] | Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C . Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008,40(11):1360-1364. | [110] | Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C . TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007,52(5):891-898. | [111] | Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40(6):761-767. | [112] | Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF . A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011,4(2):319-330. | [113] | Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J . DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010,153(4):1747-1758. | [114] | Zhang J, Zhou X, Yan W, Zhang Z, Lu L, Han Z, Zhao H, Liu H, Song P, Hu Y, Shen G, He Q, Guo S, Gao G, Wang G, Xing Y . Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol, 2015,208(4):1056-1066. | [115] | Nemoto Y, Nonoue Y, Yano M, Izawa T . Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J, 2016,86(3):221-233. | [116] | Du A, Tian W, Wei M, Yan W, He H, Zhou D, Huang X, Li S, Ouyang X . The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol Plant, 2017,10(7):948-961. | [117] | St Clair DA . Quantitative disease resistance and quantitative resistance Loci in breeding. Annu Rev Phytopathol, 2010,48:247-268. | [118] | Helliwell EE, Yang Y . Molecular strategies to improve rice disease resistance. Methods Mol Biol, 2013,956:285-309. | [119] | Liu Y, Wu H, Chen H, Liu Y, He J, Kang H, Sun Z, Pan G, Wang Q, Hu J, Zhou F, Zhou K, Zheng X, Ren Y, Chen L, Wang Y, Zhao Z, Lin Q, Wu F, Zhang X, Guo X, Cheng X, Jiang L, Wu C, Wang H, Wan J . A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol, 2015,33(3):301-305. | [120] | Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G . Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA, 2009,106(52):22163-22168. | [121] | Hu L, Wu Y, Wu D, Rao W, Guo J, Ma Y, Wang Z, Shangguan X, Wang H, Xu C, Huang J, Shi S, Chen R, Du B, Zhu L, He G . The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against Planthopper in rice. Plant Cell, 2017,29(12):3157-3185. | [122] | Ji H, Kim SR, Kim YH, Suh JP, Park HM, Sreenivasulu N, Misra G, Kim SM, Hechanova SL, Kim H, Lee GS, Yoon UH, Kim TH, Lim H, Suh SC, Yang J, An G, Jena KK . Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to Brown Planthopper (BPH) insect pest. Sci Rep, 2016,6:34376. | [123] | Zhao Y, Huang J, Wang Z, Jing S, Wang Y, Ouyang Y, Cai B, Xin XF, Liu X, Zhang C, Pan Y, Ma R, Li Q, Jiang W, Zeng Y, Shangguan X, Wang H, Du B, Zhu L, Xu X, Feng YQ, He SY, Chen R, Zhang Q, He G . Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci USA, 2016,113(45):12850-12855. | [124] | Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K . COLD1 confers chilling tolerance in rice. Cell, 2015,160(6):1209-1221. | [125] | Zhang Z, Li J, Pan Y, Li J, Zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W, Yu J, Sun X, Li G, Ding Y, Ma L, Shen S, Dai L, Zhang H, Yang S, Guo Y, Li Z . Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun, 2017,8:14788. | [126] | Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP, Lin HX . Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet, 2015,47(7):827-833. | [127] | Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X . Heterotrimeric G proteins regulate nitrogen-use efficiencyin rice. Nat Genet, 2015,46(6):652-656. | [128] | Gamuyao R, Chin JH, Pariascatanaka J, Pesaresi P, Catausan S, Dalid C, Slametloedin I, Tecsonmendoza EM, Wissuwa M, Heuer S . The protein kinase Pstol1 fromtraditional rice confers tolerance of phosphorus deficiency. Nature, 2012,488(7412):535-539. | [129] | Zhang HT, Wang SP . Progress in functional genomic studies of rice disease resistance. Chin Bull Life Sci, 2016,28(10):1189-1199. | [129] | 张海涛, 王石平 . 水稻抗病功能基因组研究进展. 生命科学, 2016,28(10):1189-1199. | [130] | Gong SL, Hou ML . Research progress on rice varietal resistance to the brown planthopper and white-backed planthopper. Plant Prot, 2017,43(1):15-23. | [130] | 弓少龙, 侯茂林 . 水稻对褐飞虱和白背飞虱的抗性及其机制研究进展. 植物保护, 2017,43(1):15-23. | [131] | Peng XH, Xie XY . Progress in remediation of the soil contaminated with cadmium in rice soil. Hunan Agr Sci, 2007, ( 2):67-69. | [131] | 彭星辉, 谢晓阳 . 稻田镉(Cd)污染的土壤修复技术研究进展. 湖南农业科学, 2007, ( 2):67-69. | [132] | Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF . Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA, 2010,107(38):16500-16505. |
|