[1] 杨守仁, 张龙步, 陈温福, 徐正进, 王进民. 水稻超高产育种的理论和方法. 中国水稻科学, 1996, 10(2): 115-120.[2] 邹江石, 吕川根. 水稻超高产育种的实践与思考. 作物学报, 2005, 31(2): 254-258.[3] 钟代彬, 罗利军, 应存山. 野生稻有利基因转移研究进展. 中国水稻科学, 2000, 14(2): 103-106.[4] Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR. Identification of trait-improving quantita-tive trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150(2): 899-909.[5] 李德军, 孙传清, 付永彩, 李晨, 朱作峰, 陈亮, 才宏伟, 王象坤. 利用AB-QTL法定位江西东乡野生稻中的高产基因. 科学通报, 2002, 47(11): 854-858.[6] Fu Q, Zhang P, Tan L, Zhu Z, Ma D, Fu Y, Zhan X, Cai H, Sun C. Analysis of QTLs for yield-related traits in Yuan-jiang common wild rice (Oryza rufipogon Griff.). J Genet Genomics, 2010, 37(2): 147-157.[7] Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107(3): 479-493.[8] Xie XB, Jin FX, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa ×O. rufipogon cross. Theor Appl Genet, 2007, 116(5): 613-622.[9] Tan LB, Liu FX, Xue W, Wang GJ, Ye S, Zhu ZF, Fu YC, Wang XK, Sun CQ. Development of Oryza rufipo-gon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. J In-tegr Plant Biol, 2007, 49(6): 871-884.[10] Jing ZB, Qu YY, Yu C, Pan DJ, Fan ZL, Chen JY, Li C. QTL analysis of yield-related traits using an advanced backcross population derived from common wild rice (Oryza rufipogon L). Mol Plant Breed, 2010, 1(1): 1-10.[11] Moncada P, Martínez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR. Quantitative trait loci for yield and yield components in an Oryza sativa ×Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102(1): 41-52.[12] Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet, 2006, 112(3): 570-580.[13] Tian F, Zhu ZF, Zhang BS, Tan LB, Fu YC, Wang XK, Sun CQ. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet, 2006, 113(4): 619-629.[14] Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor Appl Genet, 2006, 112(6): 1052-1062.[15] Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res, 1980, 8(19): 4321-4326.[16] Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100(5): 697-712.[17] McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9(6): 199-207.[18] Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic link-age maps of experimental and natural populations. Genomics, 1987, 1(2): 174-181.[19] Wang S, Basten CJ, Zeng ZB. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA, 2005.[20] Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice dis-ease resistance gene, Xa21. Science, 1995, 270(5243): 1804-1806.[21] Zhang Q, Wang CL, Zhao KJ, Yang WC, Qiao F, Zhou YL, Jiang QX, Liu GC. Development of near-isogenic line CBB23 with a new resistance gene to bacterial blight in rice and its application. Chinese J Rice Sci, 2002, 16(3): 206-210.[22] Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet, 1992, 84(3-4): 345-354.[23] Huang Z, He G, Shu L, Li X, Zhang Q. Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet, 2001, 102(6-7): 929-934.[24] Zhou SX, Tian F, Zhu ZF, Fu YC, Wang XK, Sun CQ. Identification of quantitative trait loci controlling drought tolerance at seedling stage in Chinese Dongxiang common wild rice (Oryza rufipogon Griff.). Acta Genet Sin, 2006, 33(6): 551-558.[25] 夏瑞祥, 肖宁, 洪义欢, 张超, 苏琰, 张小蒙, 陈建民. 东乡野生稻苗期耐冷性的QTL定位. 中国农业科学, 2010, 43(3): 443-451.[26] Liang FS, Deng QY, Wang YG, Xiong YD, Jin DM, Li JM, Wang B. Molecular marker-assisted selection for yield-enhancing genes in the progeny of 9311 ×O. rufipogon using SSR. Euphytica, 2004, 139(2): 159-165.[27] 何风华, 席章营, 曾瑞珍, Talukdar A, 张桂权. 利用单片段代换系定位水稻抽穗期QTL. 中国农业科学, 2005, 38(8): 1505-1513.[28] Xiao J, Li J, Yuan L, Tanksley SD. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92(2): 230-244.[29] Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittal-mani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS. QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108(1): 141-153.[30] 邢永忠, 徐才国, 华金平, 谈移芳, 孙新立. 水稻株高和抽穗期基因的定位和分离. 植物学报, 2001, 43(7): 721-726.[31] Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang QF. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet, 2008, 116(6): 789-796.[32] Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40(6): 761-767.[33] Doi K, Yoshimura A, Iwata N. RFLP mapping and QTL analysis of heading date and pollen sterility using back-cross populations between Oryza sativa L. and Oryza glaberrima Steud. Breed Sci, 1998, 48(4): 395-399.[34] Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type re-sponse regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Gene Dev, 2004, 18(8): 926-936.[35] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Green revolution: a mutant gibberellins-synthesis gene in rice. Nature, 2002, 416(6882): 701-702.[36] Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. vTheor Appl Genet, 1996, 93(8): 1211-1217.[37] Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A ma-jor QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4(2): 319-330.[38] Onishi K, Horiuchi Y, IshigohOka N, Takagi K, Ichikawa N, Maruoka M, Sano Y. A QTL cluster for plant architecture and its ecological significance in Asian wild rice. Breed Sci, 2007, 57(1): 7-16.[39] Liu XL, Wan XY, Ma XD, Wan JM. Dissecting the genetic basis for the effect of rice chalkiness, amylose con-tent, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome, 2011, 54(1): 64-80. |