遗传 ›› 2023, Vol. 45 ›› Issue (9): 781-792.doi: 10.16288/j.yczz.23-074
刘向东1,2,3(), 吴锦文1,2,3, 陆紫君1,2,3, Muhammad Qasim Shahid1,2,3
收稿日期:
2023-03-27
修回日期:
2023-06-16
出版日期:
2023-09-20
发布日期:
2023-06-26
通讯作者:
刘向东
E-mail:xdliu@scau.edu.cn
基金资助:
Xiangdong Liu1,2,3(), Jinwen Wu1,2,3, Zijun Lu1,2,3, Muhammad Qasim Shahid1,2,3
Received:
2023-03-27
Revised:
2023-06-16
Online:
2023-09-20
Published:
2023-06-26
Contact:
Xiangdong Liu
E-mail:xdliu@scau.edu.cn
Supported by:
摘要:
同源四倍体水稻具有籽粒增大、营养成分增加和抗性增强等特点,但其育性普遍偏低,影响产量,无法直接应用。高育性四倍体水稻的成功创制解决了同源四倍体水稻育性偏低的瓶颈问题,然而该类型多倍体水稻能否在生产上推广应用需要进一步探讨。本文总结了同源四倍体水稻及其杂种F1育性偏低的细胞和分子遗传学机理研究的概况,重点介绍了高育性四倍体水稻的主要类型及最新的研究进展,最后提出未来利用新型四倍体水稻开展多代杂种优势等研究的设想,以期为水稻多倍体育种提供参考。
刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792.
Xiangdong Liu, Jinwen Wu, Zijun Lu, Muhammad Qasim Shahid. Autotetraploid rice: challenges and opportunities[J]. Hereditas(Beijing), 2023, 45(9): 781-792.
表1
同源四倍体水稻和高育性四倍体水稻花粉母细胞减数分裂各时期染色体行为异常频率及育性表现"
材料 | 花粉育性(%) | 结实率(%) | 染色体构型 | 参考文献 |
---|---|---|---|---|
二倍体水稻 | 96.32±2.67 | 85.06±8.06 | (0.20~0.83) I+(11.17~11.90) II① (0.16~1.18) I+(11.41~11.92) II② | [ |
同源四倍体水稻 | 69.10±17.61 | 33.83±16.05 | (0.09~1.03) I+(5.67~13.21) II+(0.04~1.23) III+(4.83~8.71) IV+ (0.00~0.19) V + (0.00~0.36) VI① (0.25~4.13) I+(5.36~14.54) II+(0.13~1.26) III+(4.49~8.29) IV+ (0.00~0.28) V + (0.00~0.37) VI② | [ |
二倍体水稻籼粳杂种F1 | 30.51±1.63 | 30.34±19.70 | (0.74±0.38) I+(11.26±0.19) II① (0.23±0.04) I+(11.77±0.11) II② | [ |
同源四倍体水稻籼粳杂种F1 | 52.96±38.49 | 47.91±12.09 | (0.23~0.72) I+(10.26~13.00) II+(0.08~0.64) III+(5.23~6.65) IV① (0.57~1.33) I+(10.89~15.79) II+(0.05~0.53) III+(3.74~6.27) IV② | [ |
PMeS多倍体水稻 | --③ | 77.14±3.71 | (0.03~0.04) I+(15.83~15.86) II+(0.03~0.04) III+(4.15~4.38) IV+(0.02~0.03) VI① | [ |
高育性四倍体水稻恢复系 | 81.27±0.72 | 72.35±1.91 | (0.05~0.11) I+(19.17~19.96) II+(0.01~0.09) III+(2.20~2.26) IV+(0.00~0.01) VI② | [ |
高育性四倍体水稻恢复系杂种F1 | 86.69±1.01 | 80.5±2.12 | (0.06~0.02) I+(14.36~17.67) II+(0.01~0.06) III+(3.10~4.80) IV +(0.00~0.01) VI+(0.00~0.01) VIII② | [ |
新型四倍体水稻 | 90.79±5.13 | 75.21±5.81 | (0.06~0.53) I+(4.89~10.17) II+(0.02~0.37) III+(6.85~9.45) IV+(0~0.02) VI① | [ |
新型四倍体水稻杂种F1 | 80.34±4.73 | 76.42±5.64 | (1.62±0.22) I+(8.71±0.40) II+(0.33±0.06) III+(6.84±0.73) IV+(0.01±0.01) V+(0.07±0.03) VI | [ |
[1] |
Hu B, Wang W, Chen JJ, Liu YQ, Chu CC. Genetic improvement toward nitrogen-use efficiency in rice: lessons and perspectives. Mol Plant, 2023, 16(1): 64-74.
doi: 10.1016/j.molp.2022.11.007 |
[2] |
Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Gao CX, Liang CZ, Li JY. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.e14.
doi: 10.1016/j.cell.2021.01.013 |
[3] |
Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JSP. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot, 2017, 120(2): 183-194.
doi: 10.1093/aob/mcx079 |
[4] | Cai DT, Yuan LP, Lu XG. A new strategy of rice breeding in the 21st century II. Searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization. Acta Agron Sin, 2001, 27(1):110-116. |
蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种新战略II. 利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001, 27(1): 110-116. | |
[5] |
Allario T, Brumos J, Colmenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ, 2013, 36(4): 856-868.
doi: 10.1111/pce.2013.36.issue-4 |
[6] |
Chao DY, Dilkes B, Luo HB, Douglas A, Yakubova E, Lahner B, Salt DE. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 2013, 341(6146): 658-659.
doi: 10.1126/science.1240561 |
[7] |
Wu JW, Hu C, Shahid MQ, Guo HB, Zeng YX, Liu XD, Lu YG. Analysis on genetic diversification and heterosis in autotetraploid rice. SpringerPlus, 2013, 2: 439.
doi: 10.1186/2193-1801-2-439 |
[8] |
Wang NN, Fan XH, Lin YJ, Li Z, Wang YK, Zhou YM, Meng WL, Peng ZW, Zhang CY, Ma J. Alkaline stress induces different physiological, hormonal and gene expression responses in diploid and autotetraploid rice. Int J Mol Sci, 2022, 23(10): 5561.
doi: 10.3390/ijms23105561 |
[9] |
Mclntyre PJ. Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. Am J Bot, 2012, 99(4): 655-662.
doi: 10.3732/ajb.1100466 |
[10] | Cai DT, Chen JG, Chen DL, Dai BC, Zhang W, Song, ZJ, Yang ZF, Du CQ, Tang ZQ, He YC, Zhang DS, He GC, Zhu YG. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Science in China (Series C: Life Sciences), 2007, 50(3), 356-366. |
蔡得田, 陈建国, 陈冬玲, 戴兵成, 张维, 宋兆建, 杨之帆, 杜超群, 唐志强, 何玉池, 张道生, 何光存, 朱英国. 两个具多倍体减数分裂稳定性的多倍体水稻品系的选育. 中国科学(C辑:生命科学), 2007, 37(2): 217-226. | |
[11] | 郭海滨, 刘向东等著,. 同源四倍体水稻研究. 广州: 华南理工大学出版社, 2014. |
[12] | Tu SB, Kong FL, Xu QF, He T. Breakthrough in hybrid rice breeding with autotetraploid. CAS Bull, 2003, 18(6): 426-428. |
涂升斌, 孔繁伦, 徐琼芳, 何涛. 水稻同源四倍体杂种优势利用技术新体系的研究. 中国科学院院刊, 2003, 18(6): 426-428. | |
[13] |
Guo HB, Mendrikahy JN, Xie L, Deng JF, Lu ZJ, Wu JW, Li X, Shahid MQ, Liu XD. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci Rep, 2017, 7: 40139.
doi: 10.1038/srep40139 pmid: 28071676 |
[14] | Nakamori E. On the occurrence of the tetraploid plant of rice, Oryza sativa L. Proc of the Impe Acad, 1933, 9(7): 340-341. |
[15] | Ichijima K. On the artificially induced mutations and polyploid plants of rice occurring in subsequent generations. Proc of the Impe Acad, 1934, 10(6): 388-391. |
[16] | Oka H. Studies on tetraploid rice VI . fertility variation and segregation ratios for several characters in tetraploid hybrids of rice, Oryza sativa L. Cytologia, 1955, 3(20): 258-266. |
[17] | Bao WK, Yan YR. A preliminary study on the autotrophic polyploids and diploids of several cereal crops. J Integr Plant Biol, 1956, 5(3): 297-316. |
鲍文奎, 严育瑞. 几种禾谷类作物的同源多倍体和双二倍体的研究初报. 植物学报, 1956, 5(3): 297-316. | |
[18] | Yan YR, Bao WK. Polyploid breeding methods of cereal crops I. tetraploid rice. Acta Agron Sin, 1960, 11(1): 1-19. |
严育瑞, 鲍文奎. 禾谷类作物的多倍体育种方法的研究 I. 四倍体水稻. 农业学报, 1960, 11(1): 1-19. | |
[19] | Bao WK, Qin RZ, Wu DY, Chen ZY, Song WC, Zhang YH. High yielding tetraploid rice clones. Chin Agric Sci, 1985, 18(6): 64-66. |
鲍文奎, 秦瑞珍, 吴德瑜, 陈志勇, 宋文昌, 张玉华. 高产四倍体水稻无性系. 中国农业科学, 1985, 18(6): 64-66. | |
[20] |
Huang YQ, Huang QC, Li JZ, Yin Y, Jiao Z. Photosynthetic physiology and molecular response mechanisms of indica-japonica intersubspecific tetraploid rice seedlings to ion beams. J Plant Growth Regulation, 2021, 40(2): 722-735.
doi: 10.1007/s00344-020-10136-x |
[21] |
He JH, Cheng XA, Chen ZX, Guo HB, Liu XD, Lu YG. Changes in the pattern of organization of microtubules during meiosis in pollen mother cell of autotetraploid rice. Acta Agro Sini, 2010, 36(10): 1777-1785.
doi: 10.3724/SP.J.1006.2010.01777 |
何金华, 程杏安, 陈志雄, 郭海滨, 刘向东, 卢永根. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化. 作物学报, 2010, 36(10): 1777-1785.
doi: 10.3724/SP.J.1006.2010.01777 |
|
[22] | Huang QC, Sun JS, Bai SL. Study on reproductive characters of autotetraploid rice. Sci Agric Sin, 1999, 32(2): 14-18. |
黄群策, 孙敬三, 白素兰. 同源四倍体水稻的生殖特性研究. 中国农业科学, 1999, 32(2):14-18. | |
[23] | Zhang HH, Feng JH, Lu YG, Yang BY, Liu XD. Observation on formation and development of autotetraploid rice embryo sac using laser scanning confocal microscope. J Chin Elec Micr Soci, 2003, 22(5): 380-384. |
张华华, 冯九焕, 卢永根, 杨秉耀, 刘向东. 利用激光扫描共聚焦显微镜观察同源四倍体水稻胚囊的形成与发育. 电子显微学报, 2003, 22(5): 380-384. | |
[24] | Guo HB, Lu YG, Feng JH, Yang BY, Liu XD. Further observation on the formation and development of autotetraploid rice embryo sac using laser scanning confocal microscopy. Acta Laser Biol Sini, 2006, 15(2): 111-117. |
郭海滨, 卢永根, 冯九焕, 杨秉耀, 刘向东. 利用激光扫描共聚焦显微术对同源四倍体水稻胚囊形成与发育的进一步观察. 激光生物学报, 2006, 15(2): 111-117. | |
[25] | Zhang HH, Liu XD, Lu YG, Feng JH. Observation on the double fertilization and embryogenesis in autotetraploid rice. Acta Laser Biol Sini, 2006, 15(1): 9-14. |
张华华, 刘向东, 卢永根, 冯九焕. 同源四倍体水稻受精与胚胎形成过程的观察. 激光生物学报, 2006, 15(1): 9-14. | |
[26] | Wang L, Liu XD, Lu YG, Feng JH, Xu XB, Xu SX. Endosperm development in autotetraploid rice: the development of the cellulose wall of aleuronic layer cell, starch accumulation of endosperm and formation of a callose “sheath-like” structure. Chinese J Rice Sci, 2004, 18(6): 507-514. |
王兰, 刘向东, 卢永根, 冯九焕, 徐雪宾, 徐是雄. 同源四倍体水稻胚乳发育:糊粉层细胞壁纤维素物质发育、胚乳淀粉积累及胼胝质“套”的形成. 中国水稻科学, 2004, 18(6): 507-514. | |
[27] | Wang L, Liu XD, Lu YG, Feng JH, Xu XB, Xu SX. Endosperm development in autotetraploid rice: the fusion of polar nuclei and the formation of endosperm cell wall. Chinese J Rice Sci, 2004, 18(4): 281-289. |
王兰, 刘向东, 卢永根, 冯九焕, 徐雪宾, 徐是雄. 同源四倍体水稻胚乳发育:极核融合和胚乳细胞化. 中国水稻科学, 2004, 18(4): 281-289. | |
[28] |
Wu JW, Shahid MQ, Guo HB, Yin W, Chen ZX, Wang L, Liu XD, Lu YG. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Plant Reprod, 2014, 27(4): 181-196.
doi: 10.1007/s00497-014-0250-2 pmid: 25262386 |
[29] | Li X, Yu H, Jiao YM, Shahid MQ, Wu JW, Liu XD. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice. PLoS One, 2018, 13(8): e201854. |
[30] |
Chen L, Shahid MQ, Wu JW, Chen ZX, Wang L, Liu XD. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice. Mol Genet Genomics, 2018, 293(6): 1407-1420.
doi: 10.1007/s00438-018-1471-0 pmid: 29974305 |
[31] |
Ghaleb MAA, Li C, Shahid MQ, Yu H, Liang JH, Chen RX, Wu JW, Liu XD. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles. BMC Plant Biol, 2020, 20(1): 83.
doi: 10.1186/s12870-020-2291-z pmid: 32085735 |
[32] |
Chen L, Yuan Y, Wu JW, Chen ZX, Wang L, Shahid MQ, Liu XD. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes. Rice, 2019, 12(1): 34.
doi: 10.1186/s12284-019-0294-x pmid: 31076936 |
[33] |
He JH, Shahid MQ, Li YJ, Guo HB, Cheng XA, Liu XD, Lu YG. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids. J Exp Bot, 2011, 62(13): 4433-4445.
doi: 10.1093/jxb/err098 pmid: 21624978 |
[34] | Wu JW, Shahid MQ, Chen L, Chen ZX, Wang L, Liu XD, Lu YG. Polyploidy enhances F1 pollen sterility loci interactions that increase meiosis abnormalities and pollen sterility in autotetraploid rice. Plant Physiol, 2015, 169(4): 2700-2717. |
[35] |
Hu CY, Zeng YX, Lu YG, Li JQ, Liu XD. High embryo sac fertility and diversity of abnormal embryo sacs detected in autotetraploid indica/japonica hybrids in rice by whole-mount eosin B-staining confocal laser scanning microscopy. Plant Breeding, 2009, 128(2): 187-192.
doi: 10.1111/pbr.2009.128.issue-2 |
[36] |
Luan L, Tu SB, Long WB, Wang X, Liu YH, Kong FL, He T, Yan WG, Yu MQ. Cytogenetic studies on two F1 hybrids of autotetraploid rice varieties showing extremely high level of heterosis. Plant Syst and Evol, 2007, 267(1-4): 205-213.
doi: 10.1007/s00606-007-0577-3 |
[37] |
Tu SB, Luan L, Liu YH, Long WB, Kong FL, He T, Xu QF, Yan WG, Yu MQ. Production and heterosis analysis of rice autotetraploid hybrids. Crop Science, 2007, 47(6): 2356-2363.
doi: 10.2135/cropsci2007.01.0058 |
[38] |
Bei XJ, Shahid MQ, Wu JW, Chen ZX, Wang L, Liu XD. Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility- related genes in neo-tetraploid rice. PLoS One, 2019, 14(4): e0214953.
doi: 10.1371/journal.pone.0214953 |
[39] |
Lu ZJ, Guo XT, Huang ZY, Xia J, Li X, Wu JW, Yu H, Shahid MQ, Liu XD. Transcriptome and gene editing analyses reveal MOF1a defect alters the expression of genes associated with tapetum development and chromosome behavior at meiosis stage resulting in low pollen fertility of tetraploid rice. Int J Mol Sci, 2020, 21(20): 7489.
doi: 10.3390/ijms21207489 |
[40] |
Wu JW, Chen YM, Lin H, Chen Y, Yu H, Lu ZJ, Li X, Zhou H, Chen ZX, Liu XD. Comparative cytological and transcriptome analysis revealed the normal pollen development process and up-regulation of fertility-related genes in newly developed tetraploid rice. Int J Mol Sci, 2020, 21(19): 7046.
doi: 10.3390/ijms21197046 |
[41] |
Kamara N, Jiao YM, Lu ZJ, Aloryi KD, Wu JW, Liu XD, Shahid MQ. Cytological observations and bulked-segregant analysis coupled global genome sequencing reveal two genes associated with pollen fertility in tetraploid rice. Int J Mol Sci, 2021, 22(2): 841.
doi: 10.3390/ijms22020841 |
[42] |
Zhang J, Liu Y, Xia EH, Yao QY, Liu XD, Gao LZ. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci USA, 2015, 112(50): 7022-7029.
doi: 10.1073/pnas.1515170112 pmid: 26621743 |
[43] |
Sun ZF, Wang YL, Song ZJ, Zhang H, Wang YD, Liu KP, Ma M, Wang P, Fang YP, Cai DT, Li GL, Fang YD. DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication. J of Adv Res, 2022, 42: 41-53.
doi: 10.1016/j.jare.2022.07.007 |
[44] | Ku TY, Gu HH, Li ZS, Tian BM, Xie ZQ, Shi GY, Chen WW, Wei F, Cao GQ. Developmental differences between anthers of diploid and autotetraploid rice at meiosis. Plants (Basel), 2022, 11(13): 1647. |
[45] |
Wei LQ, Yan LF, Wang T. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol, 2011, 12(6): R53.
doi: 10.1186/gb-2011-12-6-r53 |
[46] |
Fan YR, Yang JY, Mathioni SM, Yu JS, Shen JQ, Yang XF, Wang L, Zhang QH, Cai ZX, Xu CG, Li XH, Xiao JH, Meyers BC, Zhang QF. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA, 2016, 113(52): 15144-15149.
doi: 10.1073/pnas.1619159114 pmid: 27965387 |
[47] |
Li X, Shahid MQ, Wu JW, Wang L, Liu XD, Lu YG. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice. Int J Mol Sci, 2016, 17(4): 499.
doi: 10.3390/ijms17040499 pmid: 27077850 |
[48] |
Li X, Shahid MQ, Xia J, Lu ZJ, Fang N, Wang L, Wu JW, Chen ZX, Liu XD. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. BMC Genomics, 2017, 18(1): 129.
doi: 10.1186/s12864-017-3526-8 pmid: 28166742 |
[49] |
Li X, Shahid MQ, Wen MS, Chen SL, Yu H, Jiao YM, Lu ZJ, Li YJ, Liu XD. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice. BMC Plant Biol, 2020, 20(1): 82.
doi: 10.1186/s12870-020-2290-0 pmid: 32075588 |
[50] |
Wu JW, Chen L, Shahid MQ, Chen MY, Dong QL, Li JR, Xu XS, Liu XD. Pervasive interactions of Sa and Sb loci cause high pollen sterility and abrupt changes in gene expression during meiosis that could be overcome by double neutral genes in autotetraploid rice. Rice, 2017, 10(1): 49.
doi: 10.1186/s12284-017-0188-8 |
[51] |
Koide Y, Kuniyoshi D, Kishima Y. Fertile tetraploids: New resources for future rice breeding? Front in Plant Sci, 2020, 11: 1231.
doi: 10.3389/fpls.2020.01231 |
[52] | Yu H, Shahid MQ, Li QH, Li YD, Li C, Lu ZJ, Wu JW, Zhang ZM, Liu XD. Production assessment and genome comparison revealed high yield potential and novel specific alleles associated with fertility and yield in neo-tetraploid rice. Rice(N Y), 2020, 13(1): 32. |
[53] | Yu H, Li QH, Li YD, Yang HJ, Lu ZJ, Wu JW, Zhang ZM, Shahid MQ, Liu DX. Genomics analyses reveal unique classification, population structure and novel allele of neo-tetraploid rice. Rice(N Y), 2021, 14(1): 16. |
[54] |
Xiong YG, Gan L, Hu YP, Sun WC, Zhou X, Song ZJ, Zhang XH, Li Y, Yang ZF, Xu WF, Zhang JH, He YC, Cai DT. OsMND1 regulates early meiosis and improves the seed set rate in polyploid rice. Plant Growth Regulation, 2019, 87(2): 341-356.
doi: 10.1007/s10725-019-00476-4 |
[55] |
Zhang XH, Zuo B, Song ZJ, Wang W, He YC, Liu YH, Cai DT. Breeding and study of two new photoperiod- and thermo-sensitive genic male sterile lines of polyploid rice (Oryza sativa L.). Sci Rep, 2017, 7(1): 14744.
doi: 10.1038/s41598-017-15241-8 |
[56] |
Rao XL, Ren J, Wang W, Chen RR, Xie Q, Xu YQ, Li DM, Song ZJ, He YC, Cai DT, Yang PF, Lü SY, Liu W, Zhang XH. Comparative DNA-methylome and transcriptome analysis reveals heterosis- and polyploidy-associated epigenetic changes in rice. The Crop Journal, 2022, 11(2): 427-437.
doi: 10.1016/j.cj.2022.06.011 |
[57] |
Yu Z, Haage K, Streit VE, Gierl A, Torres Ruiz RA. A large number of tetraploid arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. Theor Appl Genet, 2009, 118(6):1107-1119.
doi: 10.1007/s00122-009-0966-9 pmid: 19205656 |
[58] |
Liu XD, Wu JW, Shahid MQ. Development of neo-tetraploid rice and research progress on its heterosis mechanism. Biotechnol Bul, 2022, 38(1): 44-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0406 |
刘向东, 吴锦文, Shahid Muhammad Qasim. 新型四倍体水稻创制及其杂种优势利用研究进展. 生物技术通报, 2022, 38(1): 44-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0406 |
|
[59] |
Kamara N, Lu ZJ, Jiao YM, Zhu LJ, Wu JW, Chen ZX, Wang L, Liu XD, Shahid MQ. An uncharacterized protein NY1 targets EAT1 to regulate anther tapetum development in polyploid rice. BMC Plant Biol, 2022, 22(1): 582.
doi: 10.1186/s12870-022-03976-0 |
[60] | Chen Y, Shahid MQ, Wu JW, Deng RL, Chen ZX, Wang L, Liu GQ, Zhou H, Liu XD. Thermo-sensitive genic male sterile lines of neo-tetraploid rice developed through gene editing technology revealed high levels of hybrid vigor. Plants (Basel), 2022, 11(11): 1390. |
[61] | Tu Y, Jiang AM, Gan L, Hossain M, Zhang JM, Peng B, Xiong YG, Song ZJ, Cai DT, Xu WF, Zhang JH, He YC. Genome duplication improves rice root resistance to salt stress. Rice (N Y), 2014, 7(1): 15. |
[62] | Chen R, Feng ZY, Zhang XH, Song ZJ, Cai DT. A new way of rice breeding: polyploid rice breeding. Plants (Basel), 2021, 10(3): 422. |
[63] |
Xian L, Long YX, Yang M, Chen ZX, Wu JW, Liu XD, Wang L. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice. Plant Sci, 2021, 306: 110859.
doi: 10.1016/j.plantsci.2021.110859 |
[64] |
Zhang CY, Meng WL, Wang YK, Zhou YM, Wang SY, Qi F, Wang NN, Ma J. Comparative analysis of physiological, hormonal and transcriptomic responses reveal mechanisms of saline-alkali tolerance in autotetraploid rice (Oryza sativa L.). Int J Mol Sci, 2022, 23(24): 16146.
doi: 10.3390/ijms232416146 |
[65] |
Ghouri F, Shahid MJ, Liu JW, Lai MY, Sun LX, Wu JW, Liu XD, Ali S, Shahid MQ. Polyploidy and zinc oxide nanoparticles alleviated Cd toxicity in rice by modulating oxidative stress and expression levels of sucrose and metal-transporter genes. J Hazard Mater, 2023, 448: 130991.
doi: 10.1016/j.jhazmat.2023.130991 |
[66] | Song WC, Zhang YH. Rice tetraploid and its effects on agronomic traits and nutritional constituents. Acta Agron Sin, 1992, 18(2): 137-144. |
宋文昌, 张玉华. 水稻四倍化及其对农艺性状和营养成分的影响. 作物学报, 1992, 18(2): 137-144. | |
[67] |
Song SF, Wang TK, Li YX, Hu J, Kan RF, Qiu MD, Deng YD, Liu PX, Zhang LC, Dong H, Li CX, Yu D, Li XQ, Yuan DY, Yuan LP, Li L. A novel strategy for creating a new system of thirdgeneration hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene. Plant Biotechnol J, 2021, 19(2): 251-260.
doi: 10.1111/pbi.v19.2 |
[68] |
Wang C, Liu Q, Shen Y, Hua YF, Wang JJ, Lin JR, Wu MG, Sun TT, Cheng KZ, Mercier R, Wang KJ. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol, 2019, 37(3): 283-286.
doi: 10.1038/s41587-018-0003-0 pmid: 30610223 |
[69] |
Wei X, Liu CL, Chen X, Lu HW, Wang J, Yang SL, Wang KJ. Synthetic apomixis with normal hybrid rice seed production. Mol Plant, 2023, 16(3): 489-492.
doi: 10.1016/j.molp.2023.01.005 |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[3] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[4] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[5] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[6] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[7] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[8] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[9] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[10] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[11] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[12] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[13] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[14] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[15] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: