[1] | Fairhurst TH, Dobermann A . Rice in the global food supply. Bett Crop Int, 2002,16(3):3-6. | [2] | Zhang Q, Chen QH, Wang SL, Hong YH, Wang ZL . Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice, 2014,7(1):24. | [3] | Zhang ZY, Li JJ, Pan YH, Li JL, Zhou L, Shi HL, Zeng YW, Guo HF, Yang SM, Zheng WW, Yu JP, Sun XM, Li GL, Ding YL, Ma L, Shen SQ, Dai YL, Zhang HL, Yang SH, Guo Y, Li ZC . Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun, 2017,8:14788. | [4] | Jiang LX, Ji ST, Li S, Wang LM, Han JJ, Wang LL, Zhu HX, Ji YH . Relationships between rice empty grain rate and low temperature at booting stage in Heilongjiang Province. Chin J Appl Ecol, 2010,21(7):1725-1730. | [4] | 姜丽霞, 季生太, 李帅, 王连敏, 韩俊杰, 王晾晾, 朱海霞, 纪仰慧 . 黑龙江省水稻空壳率与孕穗期低温的关系. 应用生态学报, 2010,21(7):1725-1730. | [5] | Shinada H, Iwata N, Sato T, Fujino K . Genetical and morphological characterization of cold tolerance at fertilization stage in rice. Breed Sci, 2013,63(2):197-204. | [6] | Shakiba E, Edwards JD, Jodari F, Duke SE, Baldo AM, Korniliev P , McCouch SR, Eizenga GC. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS One, 2017,12(3):e0172133. | [7] | Wang D, Liu JL, Li CG, Kang HX, Wang Y, Tan XQ, Liu MH, Deng YF, Wang ZL, Liu Y, Zhang DY, Xiao YH, Wang GL . Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice, 2016,9:61. | [8] | Schl?ppi MR, Jackson AK, Eizenga GC, Wang AJ, Chu CC, Shi Y, Shimoyama N, Boykin DL . Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA Mini-Core collection. Front Plant Sci, 2017,8:957. | [9] | Zhao JL, Zhang SH, Yang TF, Zeng ZC, Huang ZH, Liu Q, Wang XF, Leach J, Leung H, Liu B . Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiol Plant, 2015,154(3):381-394. | [10] | Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao XC, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P . Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ, 2005,28(12):1534-1551. | [11] | Zhou L, Zeng YW, Zheng WW, Tang B, Yang SM, Zhang HL, Li JJ, Li ZC . Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theor Appl Genet, 2010,121(5):895-905. | [12] | Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y . A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet, 2007,115(5):593-600. | [13] | Dai LY, Lin XH, Ye CR, Ise K, Saito K, Kato A, Xu FR, Yu TQ, Zhang DP . Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breed Sci, 2004,54(3):253-258. | [14] | Pan YH, Zhang HL, Zhang DL, Li JJ, Xiong HY, Yu JP, Li JL, Rashid MAR, Li GL, Ma XD, Cao GL, Han LZ, Li ZC . Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLoS One, 2015,10(3):e0120590. | [15] | Zhu YJ, Chen K, Mi XF, Chen TX, Ali J, Ye GY, Xu JL, Li ZK . Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS One, 2015,10(12):e0145704. | [16] | Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K, Yamaguchi-Shinozaki K . Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol, 2014,164(4):1759-1771. | [17] | Zhang SH, Zheng JS, Liu B, Peng SB, Leung H, Zhao JL, Wang XF, Yang TF, Huang ZH . Identification of QTLs for cold tolerance at seedling stage in rice (Oryza sativa L.) using two distinct methods of cold treatment. Euphytica, 2014,195(1):95-104. | [18] | Sharma P, Sharma N, Deswal R . The molecular biology of the low-temperature response in plants. Bioessays, 2005,27(10):1048-1059. | [19] | Paknejad F, Nasri M, Moghadam HRT, Zahedi H, Alahmadi MJ . Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J Biol Sci, 2007,7(6):841-847. | [20] | Kanneganti V, Gupta AK . Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008,66(5):445-462. | [21] | Kim SJ, Lee SC, Hong SK, An K, An G, Kim SR . Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cells, 2009,27(4):449-458. | [22] | Los DA, Murata N . Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta, 2004,1666(1-2):142-157. | [23] | Zhang J, Li JQ, Wang XC, Chen J . OVP1, a vacuolar H +-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiol Biochem , 2011,49(1):33-38. | [24] | Song SY, Chen Y, Chen J, Dai XY, Zhang WH . Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 2011,234(2):331-345. | [25] | Mittal D, Madhyastha DA, Grover A . Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One, 2012,7(7):e40899. | [26] | Pamplona R . Advanced lipoxidation end-products. Chem Biol Interact, 2011,192(1-2):14-20. | [27] | Bonnecarrère V, Borsani O, Díaz P, Capdevielle F, Blanco P, Monza J . Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci, 2011,180(5):726-732. | [28] | Kim SI, Tai TH . Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica, 2011,178(3):437-447. | [29] | Xie GS, Kato H, Sasaki K, Imai R . A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett, 2009,583(17):2734-2738. | [30] | Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K . Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene,OsAPXa. Plant Cell Rep, 2011,30(3):399-406. | [31] | Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D . Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol, 2005,162(2):169-180. | [32] | Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, Hu YC, Cheng JF . Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces, 2007,54(1):37-45. | [33] | Ma YY, Zhang YL, Lu J, Shao HB . Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol, 2009,8(10):2004-2010. | [34] | Shima S, Matsui H, Tahara S, Imai R . Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J, 2007,274(5):1192-1201. | [35] | Li HW, Zang BS, Deng XW, Wang XP . Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011,234(5):1007-1018. | [36] | Oliver SN, Dennis ES, Dolferus R . ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol, 2007,48(9):1319-1330. | [37] | Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H, Watanabe M, Matsuoka M, Higashitani A . Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol, 2014,164(4):2011-2019. | [38] | Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N . Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Sci, 2005,88(3):424-438. | [39] | Kandpal RP, Rao NA . Alterations in the biosynthesis of proteins and nucleic acids in finger millet (Eleucine coracana) seedlings during water stress and the effect of proline on protein biosynthesis. Plant Sci, 1985,40(2):73-79. | [40] | Venekamp JH . Regulation of cytosol acidity in plants under conditions of drought. Physiol Plant, 1989,76(1):112-117. | [41] | Schobert B, Tschesche H . Unusual solution properties of proline and its interaction with proteins. Biochim Biophys Acta, 1978,541(2):270-277. | [42] | Liu KM, Wang L, Xu YY, Chen N, Ma QB, Li F, Chong K . Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007,226(4):1007-1016. | [43] | Yang A, Dai XY, Zhang WH . A R2R3-type MYB gene,OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot, 2012,63(7):2541-2556. | [44] | Park MR, Yun KY, Mohanty B, Herath V, Xu FY, Wijaya E, Bajic VB, Yun SJ , De Los Reyes BG. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environ, 2010,33(12):2209-2230. | [45] | Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I . Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004,37(1):115-127. | [46] | Ma QB, Dai XY, Xu YY, Guo J, Liu YJ, Chen N, Xiao J, Zhang DJ, Xu ZH, Zhang XS, Chong K . Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol, 2009,150(1):244-256. | [47] | Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang HS . Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun, 2009,389(3):556-561. | [48] | Mittler R, Blumwald E . The roles of ROS and ABA in systemic acquired acclimation. Plant Cell, 2015,27(1):64-70. | [49] | Scheres B , Van Der Putten WH. The plant perceptron connects environment to development. Nature, 2017,543(7645):337-345. | [50] | Zong W, Tang N, Yang J, Peng L, Ma SQ, Xu Y, Li GL, Xiong LZ . Feedback regulation of ABA Signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol, 2016,171(4):2810-2825. | [51] | Du H, Wu N, Chang Y, Li XH, Xiao JH, Xiong LZ . Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol, 2013,83(4-5):475-488. | [52] | Mega R, Meguro-Maoka A, Endo A, Shimosaka E, Murayama S, Nambara E, Seo M, Kanno Y, Abrams SR, Sato Y . Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.). Sci Rep, 2015,5:13819. | [53] | Ji XM, Dong BD, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R . Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol, 2011,156(2):647-662. | [54] | Huang L, Hong YB, Zhang HJ, Li DY, Song FM . Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol, 2016,16:203. | [55] | Qi G . Identification of cold tolerance at seedling stage among main rice cultivars in Heilongjiang and regulation of abscisic acid[Dissertation]. Harbin: Northeast Agricultural University, 2008. | [55] | 齐光 . 黑龙江省主栽水稻品种苗期耐冷鉴定及ABA对苗期耐冷的调节作用[学位论文]. 哈尔滨: 东北农业大学, 2008. | [56] | Lee SC, Huh KW, An K, An G, Kim SR . Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice ( Oryza sativa L.). Mol Cells, 2004,18(1):107-114. | [57] | Joo J, Lee YH, Kim YK, Nahm BH, Song SI . Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Mol Cells, 2013,35(5):421-435. | [58] | Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K . Over-expression of a single Ca 2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants . Plant J, 2000,23(3):319-327. | [59] | Morsy MR, Almutairi AM, Gibbons J, Yun SJ , De Los Reyes BG. The OsLti6 genes encoding low-molecular- weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene, 2005,344:171-180. | [60] | Xie GS, Kato H, Imai R . Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J, 2012,443(1):95-102. | [61] | Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K . Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007,51(4):617-630. | [62] | Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K . Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 2006,47(1):141-153. | [63] | Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX . Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008,228(1):191-201. | [64] | Gothandam KM, Nalini E, Karthikeyan S, Shin JS . OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol, 2010,72(1-2):125-135. | [65] | Liu Y, Xu CJ, Zhu YF, Zhang LN, Chen TY, Zhou F, Chen H, Lin YJ . The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. J Integr Plant Biol, 2018,60(2):173-188, doi: 10.1111/ jipb.12614. | [66] | Liu FX, Sun QC, Tan LB, Fu YC, Li DJ, Wang XK . Identification and mapping of quantitative trait loci controlling cold-tolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages. Chin Sci Bull, 2003,48(19):2068-2071. | [67] | Andaya V, Mackill D . QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theor Appl Genet, 2003,106(6):1084-1090. | [68] | Xu LM, Zhou L, Zeng YW, Wang FM, Zhang HL, Shen SQ, Li ZC . Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Sci, 2008,174(3):340-347. | [69] | Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y . Quantitative trait locus analysis for cold tolerance at the booting stage in a rice cultivar, Hatsushizuku. Jpn Agr Res Q, 2009,43(2):115-121. | [70] | Mori M, Onishi K, Tokizono Y, Shinada H, Yoshimura T, Numao Y, Miura H, Sato T . Detection of a novel quantitative trait locus for cold tolerance at the booting stage derived from a tropical japonica rice variety Silewah. Breed Sci, 2011,61(1):61-68. | [71] | Shirasawa S, Endo T, Nakagomi K, Yamaguchi M, Nishio T . Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L. Theor Appl Genet, 2012,124(5):937-946. | [72] | Biswas PS, Khatun H, Das N, Sarker MM, Anisuzzaman M . Mapping and validation of QTLs for cold tolerance at seedling stage in rice from an indica cultivar Habiganj Boro VI (Hbj.BVI). 3 Biotech, 2017,7(6):359. | [73] | Endo T, Chiba B, Wagatsuma K, Saeki K, Ando T, Shomura A, Mizubayashi T, Ueda T, Yamamoto T, Nishio T . Detection of QTLs for cold tolerance of rice cultivar 'Kuchum' and effect of QTL pyramiding. Theor Appl Genet, 2016,129(3):631-640. | [74] | Li JL, Pan YH, Guo HF, Zhou L, Yang SM, Zhang YZ, Yang JZ, Zhang HL, Li JJ, Zeng YW, Li ZC . Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice. Theor Appl Genet, 2018,131(1):157-166 . | [75] | Andaya VC, Tai TH . Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice(Oryza sativa L.). Mol Breed, 2007,20(4):349-358. | [76] | Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y . Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics, 2010,284(1):45-54. | [77] | Kim SM, Suh JP, Lee CK, Lee JH, Kim YG, Jena KK . QTL mapping and development of candidate gene- derived DNA markers associated with seedling cold tolerance in rice ( Oryza sativa L.). Mol Genet Genomics, 2014,289(3):333-343. | [78] | Xiao N, Huang WN, Li AH, Gao Y, Li YH, Pan CH, Ji HJ, Zhang XX, Dai Y, Dai ZY, Chen JM . Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings. Theor Appl Genet, 2015,128(1):173-185. | [79] | Xiao N, Huang WN, Zhang XX, Gao Y, Li AH, Dai Y, Yu L, Liu GQ, Pan CH, Li YH, Dai ZY, Chen JM . Fine mapping of qRC10-2, a quantitative trait locus for cold tolerance of rice roots at seedling and mature stages. PLoS One, 2014,9(5):e96046. | [80] | Li LF, Liu X, Xie K, Wang YH, Liu F, Lin QY, Wang WY, Yang CY, Lu BY, Liu SJ, Chen LM, Jiang L, Wan JM . qLTG-9, a stable quantitative trait locus for low- temperature germination in rice (Oryza sativa L.). Theor Appl Genet, 2013,126(9):2313-2322. | [81] | Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M . Molecular identification of a major quantitative trait locus,qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA, 2008,105(34):12623-12628. | [82] | Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HH, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K . COLD1 confers chilling tolerance in rice. Cell, 2015,160(6):1209-1221. | [83] | Zhao JL, Zhang SH, Dong JF, Yang TF, Mao XX, Liu Q, Wang XF, Liu B . A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnol J, 2017,15(9):1141-1148. | [84] | Kim SI, Andaya VC, Tai TH . Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with a naturally occurring I99V mutation in the multifunctional glutathione transferase isoenzyme GSTZ2. Biochem J, 2011,435(2):373-380. | [85] | Lu GW, Wu FQ, Wu WX, Wang HJ, Zheng XM, Zhang YH, Chen XL, Zhou KN, Jin MN, Cheng ZJ, Li XY, Jiang L, Wang HY, Wan JM . Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. Plant J, 2014,78(3):468-480. | [86] | Saito K, Hayano-Saito Y, Kuroki M, Sato Y . Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci, 2010,179(1-2):97-102. | [87] | Huang XH, Zhao Y, Wei XH, Li CY, Wang AH, Zhao Q, Li WJ, Guo YL, Deng LW, Zhu CR, Fan DL, Lu YQ, Weng QJ, Liu KY, Zhou TY, Jing YF, Si LZ, Dong GJ, Huang T, Lu TT, Feng Q, Qian Q, Li JY, Han B . Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012,44(1):32-39. | [88] | Meijón M, Satbhai SB, Tsuchimatsu T, Busch W . Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nat Genet, 2014,46(1):77-81. | [89] | Price AL, Zaitlen NA, Reich D, Patterson N . New approaches to population stratification in genome-wide association studies. Nat Rev Genet, 2010,11(7):459-463. | [90] | Fujino K, Obara M, Shimizu T, Koyanagi KO, Ikegaya T . Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region. Breed Sci, 2015,65(5):403-410. | [91] | Shakiba E, Edwards JD, Jodari F, Duke SE, Baldo AM, Korniliev P , McCouch SR, Eizenga GC. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS One, 2017,12(3):e0172133. | [92] | Lv Y, Guo ZL, Li XK, Ye HY, Li XH, Xiong LZ . New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant Cell Environ, 2016,39(3):556-570. | [93] | Wang QY, Guan YC, Wu YR, Chen HL, Chen F, Chu CC . Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 2008,67(6):589-602. | [94] | Wang CC, Wei Q, Zhang K, Wang L, Liu FX, Zhao NL, Tan YJ, Di C, Yan H, Yu JJ, Sun CQ, Chen WJ, Xu WY, Su Z . Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One, 2013,8(12):e81849. | [95] | Tovuu A, Zulfugarov IS, Wu GX, Kang IS, Kim C, Moon BY, An G, Lee CH . Rice mutants deficient in ω-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures. Plant Physiol Biochem, 2016,109:525-535. | [96] | Qin YH, Shen X, Wang NL, Ding XP . Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice. J Plant Physiol, 2015,181:30-41. | [97] | Zang AP, Xu XJ, Neill S, Cai WM . Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J Exp Bot, 2010,61(3):777-789. | [98] | Zhu JK . Abiotic stress signaling and responses in plants. Cell, 2016,167(2):313-324. | [99] | Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S . Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci, 2017,8:161. | [100] | Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E . Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009,324(5930):1064-1068. | [101] | Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL , McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009,324(5930):1068-1071. | [102] | Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK . In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009,462(7273):660-664. | [103] | Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG . A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot, 2012,63(2):1013-1024. | [104] | Sah SK, Reddy KR, Li JX . Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci, 2016,7:571. | [105] | Tian XJ, Wang ZY, Li XF, Lv TX, Liu HZ, Wang LZ, Niu HB, Bu QY . Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice, 2015,8:28. | [106] | Muhammad R, He GY, Yang GY, Javeed H, Yan X . AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol Bioinform Online, 2012,8:321-355. | [107] | Liu JY, Shi YT, Yang SH . CBF: a key factor balancing plant cold stress responses and growth.Chin Bull Bot, 52(6):689-698. | [107] | 刘静妍, 施怡婷, 杨淑华 . CBF: 平衡植物低温应答与生长发育的关键. 植物学报, 2017,52(6):689-698. | [108] | Chinnusamy V, Zhu JH, Zhu JK . Cold stress regulation of gene expression in plants. Trends Plant Sci, 2007,12(10):444-451. | [109] | Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM . Expression of a rice DREB1 gene,OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep, 2009,42(8):486-492. | [110] | Zhang ZY, Li JH, Li F, Liu HH, Yang WS, Chong K, Xu YY . OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev Cell, 2017, 43(6): 731-743. e5. | [111] | Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF . Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochemistry (Moscow), 2017,82(10):1103-1117. | [112] | Liu CT, Wu YB ,Wang XP . bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta, 2012,235(6):1157-1169. | [113] | Meuwissen TH, Hayes BJ, Goddard ME . Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001,157(4):1819-1829. | [114] | Sonesson AK, Meuwissen THE . Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol, 2009,41:37. | [115] | Li HD, Bao ZM, Sun XW . Genomic selection and its application. Hereditas (Beijing), 2011,33(12):1308-1316. | [115] | 李恒德, 包振民, 孙效文 . 基因组选择及其应用. 遗传, 2011,33(12):1308-1316. | [116] | Wang JK, Li HH, Zhang LY. Genetic mapping and breeding design. Beijing: Science Press, 2014. | [116] | 王建康, 李慧慧, 张鲁燕 . 基因定位与育种设计. 北京: 科学出版社, 2014. |
|