遗传 ›› 2019, Vol. 41 ›› Issue (12): 1073-1083.doi: 10.16288/j.yczz.19-100
• 综述 • 下一篇
收稿日期:
2019-06-27
修回日期:
2019-08-09
出版日期:
2019-12-20
发布日期:
2019-10-15
通讯作者:
田静
E-mail:tianjing@nwu.edu.cn
作者简介:
吕赵劼,硕士研究生,专业方向:人类遗传与发育生物学。E-mail: ZhaojieLyu@outlook.com
基金资助:
Zhaojie Lyu, Zhihao Wang, Shuxian Lu, Peirong Liu, Jing Tian()
Received:
2019-06-27
Revised:
2019-08-09
Online:
2019-12-20
Published:
2019-10-15
Contact:
Tian Jing
E-mail:tianjing@nwu.edu.cn
Supported by:
摘要:
短指(趾)症(brachydactyly, BD)是一类指(趾)骨或掌(跖)骨的异常缩短或缺失而造成的手/足畸形病变。从临床表型上短指(趾)症可以分为单纯型短指(趾)症以及包含短指(趾)症状的综合征,其中单纯型短指(趾)症又分为5种类型:BDA、BDB、BDC、BDD和BDE,而每一类型又分为不同的亚型。作为一类重要的分子疾病家族,随着对每种短指(趾)症的深入研究,大多数单纯型短指(趾)症和部分综合征的致病基因及其分子机制逐渐被发现。虽然短指(趾)症在表型上高度多样化,但在分子水平上这些致病基因主要影响Hedgehog、NOTCH、WNT和BMP等信号传导通路。这些信号传导通路组成了一个复杂的信号调控网络,在指(趾)骨及关节的不同发育阶段发挥着不同的作用,其中BMP信号传导通路扮演着至为关键的角色。本文在目前对短指(趾)症的分类基础上,详细综述了短指(趾)症相关致病基因及所影响的信号通路等方面的最新进展,旨在探讨指(趾)骨形成的分子机制,以期为短指(趾)症的临床诊断以及人类骨骼发育的分子调控机制研究提供参考。
吕赵劼, 王志浩, 卢淑娴, 刘沛蓉, 田静. 短指(趾)症及指(趾)骨发育的分子调控机制[J]. 遗传, 2019, 41(12): 1073-1083.
Zhaojie Lyu, Zhihao Wang, Shuxian Lu, Peirong Liu, Jing Tian. Brachydactyly and the molecular mechanisms of digit formation[J]. Hereditas(Beijing), 2019, 41(12): 1073-1083.
表1
单纯型短指(趾)症和部分短指(趾)症综合征"
疾病名称 | MIM | 致病基因 | 基因定位 | 参考文献 | |
---|---|---|---|---|---|
单纯型短 指(趾)症 | BDA1 | 112 500 | IHH、GDF5和BMP1RB | 2q35~q36、20q11和4q21~20 | [ |
BDA2 | 112 600 | BMPR1B、GDF5和BMP2 | 4q21~20、20q11和20p12 | [ | |
BDA3 | 112 700 | 暂无 | 暂无 | [ | |
BDA4 | 112 800 | 暂无 | 暂无 | [ | |
BDB1 | 113 000 | ROR2 | 9q22 | [ | |
BDB2 | 611 377 | NOG | 17q22 | [ | |
BDC | 113 100 | GDF5 | 20q11 | [ | |
BDD | 113 200 | HOXD13 | 2q31.1 | [ | |
BDE1 | 113 300 | HOXD13 | 2q31.1 | [ | |
BDE2 | 613 328 | PTHLH | 12p11.22 | [ | |
部分短指 (趾)综合征 | 短指(趾)-高血压综合征 | 112 410 | PDE3A | 12p12.2 | [ |
Rubinstein-Taybi综合征 | 180 849 | CREBBP | 16p13.3 | [ | |
Adams-Olive 综合征 | 100 300 | ARHGAP31 | 3q13.32~q13.33 | [ | |
Catel-Manzke综合征 | 616 145 | TGDS | 13q32.1 | [ | |
Feingold 综合征 | 164 280 | MYCN | 2p24.3 | [ | |
Du Pan 综合征 | 228 900 | GDF5 | 20q11.2 | [ | |
Robinow 综合征 | 268 310 | ROR2 | 9q22 | [ | |
Temtamy轴前短指综合征 | 605 282 | CHSY1 | 15q26.3 | [ |
[1] |
Temtamy SA, Aglan MS . Brachydactyly. Orphanet J Rare Dis, 2008,3:15.
doi: 10.1186/1750-1172-3-15 pmid: 18554391 |
[2] | OMIM . Online Mendelian Inheritance in Man:http:// www.omim.org/ . |
[3] |
Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S, Nishimura G, Sangiorgi L, Savarirayan R, Sillence D, Spranger J, Superti-Furga A, Warman M, Unger S . Nosology and vlassification of genetic skeletal disorders: 2015 revision. Am J Med Genet A, 2015,167(12):2869-2892.
doi: 10.1002/ajmg.a.37365 pmid: 26394607 |
[4] |
Guo Y, Liang H, Deng H . Advances in the molecular genetics of brachydactyly. Hereditas(Beijing), 2012,34(12):1522-1528.
doi: 10.3724/SP.J.1005.2012.01522 |
虢毅, 梁卉, 邓昊 . 短指/趾的分子遗传学研究进展. 遗传, 2012,34(12):1522-1528.
doi: 10.3724/SP.J.1005.2012.01522 |
|
[5] |
Stricker S, Verhey van Wijk N, Witte F, Brieske N, Seidel K, Mundlos S . Cloning and expression pattern of chicken Ror2 and functional characterization of truncating mutations in brachydactyly type B and Robinow syndrome. Dev Dyn, 2006,235(12):3456-3465.
doi: 10.1002/dvdy.20993 pmid: 17061261 |
[6] |
Lehmann K, Seemann P, Silan F, Goecke TO, Irgang S, Kjaer KW, Kjaergaard S, Mahoney MJ, Morlot S, Reissner C, Kerr B, Wilkie AO, Mundlos S . A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN. Am J Hum Genet, 2007,81(2):388-396.
doi: 10.1086/519697 |
[7] |
Schwabe GC, Türkmen S, Leschik G, Palanduz S, Stöver B, Goecke TO, Mundlos S . Brachydactyly type C caused by a homozygous missense mutation in the prodomain of CDMP1. Am J Med Genet A, 2004,124A(4):356-363.
doi: 10.1002/ajmg.a.20349 pmid: 14735582 |
[8] |
Johnson D, Kan SH, Oldridge M, Trembath RC, Roche P, Esnouf RM, Giele H, Wilkie AO . Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E. Am J Hum Genet, 2003,72(4):984-997.
doi: 10.1086/374721 pmid: 12649808 |
[9] |
Klopocki E, Hennig BP, Dathe K, Koll R, de Ravel T, Baten E, Blom E, Gillerot Y, Weigel JF, Krüger G, Hiort O, Seemann P, Mundlos S . Deletion and point mutations of PTHLH cause brachydactyly type E. Am J Hum Genet, 2010,86(3):434-439.
doi: 10.1016/j.ajhg.2010.01.023 pmid: 20170896 |
[10] |
Gao B, Guo J, She C, Shu A, Yang M, Tan Z, Yang X, Guo S, Feng G, He L . Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat Genet, 2001,28:386-388.
doi: 10.1038/ng577 pmid: 11455389 |
[11] |
Byrnes AM, Racacho L, Nikkel SM, Xiao F, MacDonald H, Underhill TM, Bulman DE. Mutations in GDF5 presenting as semidominant brachydactyly A1. Hum Mutat, 2010,31(10):1155-1162.
doi: 10.1002/humu.21338 pmid: 20683927 |
[12] |
Racacho L, Byrnes AM, MacDonald H, Dranse HJ, Nikkel SM, Allanson J, Rosser E, Underhill TM, Bulman DE. Two novel disease-causing variants in BMPR1B are associated with brachydactyly type A1. Eur J Hum Genet, 2015,23(12):1640-1645.
doi: 10.1038/ejhg.2015.38 pmid: 25758993 |
[13] |
Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Süring K, Majewski F, Tinschert S, Grzeschik KH, Müller D, Knaus P, Nürnberg P, Mundlos S . Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci USA, 2003,100(21):12277-12282.
doi: 10.1073/pnas.2133476100 pmid: 14523231 |
[14] |
Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Dawson K, Stricker S, Pohl J, Plöger F, Staub E, Nickel J, Sebald W, Knaus P, Mundlos S . Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Invest, 2005,115(9):2373-2381.
doi: 10.1172/JCI25118 pmid: 16127465 |
[15] |
Dathe K, Kjaer KW, Brehm A, Meinecke P, Nürnberg P, Neto JC, Brunoni D, Tommerup N, Ott CE, Klopocki E, Seemann P, Mundlos S . Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am J Hum Genet, 2009,84(4):483-492.
doi: 10.1016/j.ajhg.2009.03.001 |
[16] |
Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, Tüysüz B, Murday VA, Patton MA, Wilkie AO, Jeffery S . Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet, 2000,25(4):419-422.
doi: 10.1038/78107 pmid: 10932186 |
[17] |
van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, Skovby F, Kerr B, Percin EF, Akarsu N, Brunner HG . Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet, 2000,25(4):423-426.
doi: 10.1038/78113 pmid: 10932187 |
[18] |
Tian J, Ling L, Shboul M, Lee H, O'Connor B, Merriman B, Nelson SF, Cool S, Ababneh OH, Al-Hadidy A, Masri A, Hamamy H, Reversade B. Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet, 2010,87(6):768-778.
doi: 10.1016/j.ajhg.2010.11.005 |
[19] |
Temtamy S, Aglan M, Topaloglu A, Wollnik B, Amr, K, El-Badry T, Hosny G, Eldin N, Shboul M, Herdem M, Ong JX, Reversade B, Tian J. Definition of the phenotypic spectrum of Temtamy preaxial brachydactyly syndrome associated with autosomal recessive CHYS1 mutations. Middle East Journal of Medical Genetics, 2012,1(2):64-70.
doi: 10.1097/01.MXE.0000414918.78299.94 |
[20] |
St-Jacques B, Hammerschmidt M, McMahon AP,. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev, 1999,13(16):2072-2086.
doi: 10.1101/gad.13.16.2072 pmid: 10465785 |
[21] |
Gao B, Hu J, Stricker S, Cheung M, Ma G, Law KF, Witte F, Briscoe J, Mundlos S, He L, Cheah KS, Chan D . A mutation in Ihh that causes digit abnormalities alters its signalling capacity and range. Nature, 2009,458(7242):1196-1200.
doi: 10.1038/nature07862 pmid: 19252479 |
[22] |
Guo S, Zhou J, Gao B, Hu J, Wang H, Meng J, Zhao X, Ma G, Lin C, Xiao Y, Tang W, Zhu X, Cheah KS, Feng G, Chan D, He L . Missense mutations in IHH impair Indian Hedgehog signaling in C3H10T1/2 cells: implications for brachydactyly type A1, and new targets for Hedgehog signaling. Cell Mol Biol Lett, 2010,15(1):153-176.
doi: 10.2478/s11658-009-0040-2 |
[23] |
Ma G, Yu J, Xiao Y, Chan D, Gao B, Hu J, He Y, Guo S, Zhou J, Zhang L, Gao L, Zhang W, Kang Y, Cheah KS, Feng G, Guo X, Wang Y, Zhou CZ, He L . Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels. Cell Res, 2011,21(9):1343-1357.
doi: 10.1038/cr.2011.76 |
[24] |
Shen L, Ma G, Shi Y, Ruan YF, Yang XH, Wu X, Xiong YY, Wan CL, Yang C, Cai L, Xiong LK, Gong XL, He L, Qin SY. p.E95K mutation in Indian hedgehog causing brachydactyly type A1 impairs IHH/Gli1 downstream transcriptional regulation. BMC Genet, 2019,20(1):10.
doi: 10.1186/s12863-018-0697-5 pmid: 30651074 |
[25] |
Dong S, Wang Y, Tao S, Zheng F . Mutation screening in candidate genes in four Chinese brachydactyly families. Ann Clin Lab Sci, 2015,45(1):94-99.
pmid: 25696018 |
[26] |
Salian S, Shukla A, Nishimura G, Girisha KM . Severe form of brachydactyly Type A1 in a child with a c.298G > A mutation in IHH gene. J Pediatr Genet, 2017,6(3):177-180.
doi: 10.1055/s-0037-1599201 pmid: 28794911 |
[27] |
Thomas-Teinturier C, Pereda A, Garin I, Diez-Lopez I, Linglart A, Silve C, de Nanclares GP,. Report of two novel mutations in PTHLH associated with brachydactyly type E and literature review. Am J Med Genet A, 2016,170(3):734-742.
doi: 10.1002/ajmg.a.37490 pmid: 26640227 |
[28] |
Wilson DG, Phamluong K, Lin WY, Barck K, Carano RA, Diehl L, Peterson AS, Martin F, Solloway MJ . Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev Biol, 2012,363(2):413-425.
doi: 10.1016/j.ydbio.2012.01.005 |
[29] |
Filipek-Górniok B, Holmborn K, Haitina T, Habicher J, Oliveira MB, Hellgren C, Eriksson I, Kjellén L, Kreuger J, Ledin J . Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Dev Dyn, 2013,42(8):964-975.
doi: 10.1002/dvdy.23981 pmid: 23703795 |
[30] |
Guo M, Liu Z, Willen J, Shaw CP, Richard D, Jagoda E, Doxey AC, Hirschhorn J, Capellini TD . Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height. eLife, 2017,6:e29329.
doi: 10.7554/eLife.29329 pmid: 29205154 |
[31] |
Tian J, Shao JH, Liu C, Hou HY, Chou CW, Shboul M, Li GQ, El-Khateeb M, Samarah OQ, Kou Y, Chen YH, Chen MJ, Lyu Z, Chen WL, Chen YF, Sun YH, Liu YW . Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development. Cell Mol Life Sci, 2019,76(1):163-178.
doi: 10.1007/s00018-018-2928-3 pmid: 30327840 |
[32] | Shao JH, Wang ZH, Liu C, Lyu ZJ, Tian J . LRP4 and human rare genetic diseases. Chin Bull Life Sci, 2018,30(8):855-861. |
邵金辉, 王志浩, 刘聪, 吕赵劼, 田静 . LRP4与人类罕见遗传病. 生命科学, 2018,30(8):855-861. | |
[33] |
Huang D, Jiang S, Zhang Y, Liu X, Zhang J, He R . A new mutation in the gene ROR2 causes brachydactyly type B1. Gene, 2014,547(1):106-110.
doi: 10.1016/j.gene.2014.06.035 |
[34] |
Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y . The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/ JNK signalling pathway. Genes Cells, 2003,8(7):645-654.
doi: 10.1046/j.1365-2443.2003.00662.x pmid: 12839624 |
[35] |
Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollitt C, DeChiara TM, Kimble RB, Valenzuela DM, Yancopoulos GD, Wilkie AO,. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet, 2000,24(3):275-278.
doi: 10.1038/73495 pmid: 10700182 |
[36] |
Witte F, Chan D, Economides AN, Mundlos S, Stricker S . Receptor tyrosine kinase-like orphan receptor 2 (ROR2) and Indian hedgehog regulate digit outgrowth mediated by the phalanx-forming region. Proc Natl Acad Sci USA, 2010,107(32):14211-14216.
doi: 10.1073/pnas.1009314107 pmid: 20660756 |
[37] |
Su P, Ding H, Huang D, Zhou Y, Huang W, Zhong L, Vyse TJ, Wang Y . A 4.6 kb genomic duplication on 20p12.2- 12.3 is associated with brachydactyly type A2 in a Chinese family. J Med Genet, 2011,48(5):312-316.
doi: 10.1136/jmg.2010.084814 |
[38] |
Liu XD, Gao LH, Zhao AM, Zhang R, Ji BH, Wang L, Zheng YL, Zeng BF, Valenzuela RK, He L, Ma J . Identification of duplication downstream of BMP2 in a Chinese family with Brachydactyly Type A2 (BDA2). PLoS One, 2014,9(4):e94201.
doi: 10.1371/journal.pone.0094201 pmid: 24710560 |
[39] |
Wang WB, Jia YC, Zhang Z, Xu J, Zuo RT, Kang QL . A novel duplication downstream of BMP2 in a Chinese family with Brachydactyly type A2 (BDA2). Gene, 2018,642:110-115.
doi: 10.1016/j.gene.2017.11.024 pmid: 29129813 |
[40] |
Degenkolbe E, König J, Zimmer J, Walther M, Reißner C, Nickel J, Plöger F, Raspopovic J, Sharpe J, Dathe K, Hecht JT, Mundlos S, Doelken SC, Seemann P . A GDF5 point mutation strikes twice-causing BDA1 and SYNS2. PLoS Genet, 2013,9(10):e1003846.
doi: 10.1371/journal.pgen.1003846 pmid: 24098149 |
[41] |
Plöger F, Seemann P, Schmidt-von Kegler M, Lehmann K, Seidel J, Kjaer KW, Pohl J, Mundlos S. Brachydactyly type A2 associated with a defect in proGDF5 processing. Hum Mol Genet, 2008,17(9):1222-1233.
doi: 10.1093/hmg/ddn012 pmid: 18203755 |
[42] |
Kjaer KW, Eiberg H, Hansen L, van der Hagen CB, Rosendahl K, Tommerup N, Mundlos S. A mutation in the receptor binding site of GDF5 causes Mohr-Wriedt brachydactyly type A2. J Med Genet, 2006,43(3):225-231.
doi: 10.1136/jmg.2005.034058 pmid: 16014698 |
[43] |
Khan S, Mudassir M, Khan N, Marwat A . Brachdactyly instigated as a result of mutation in GDF5 and NOG genes in pakistani population. Pak J Med Sci, 2018,34(1):82-87.
doi: 10.12669/pjms.341.12885 pmid: 29643884 |
[44] |
Everman DB, Bartels CF, Yang Y, Yanamandra N, Goodman FR, Mendoza-Londono JR, Savarirayan R, White SM, Graham JM Jr, Gale RP, Svarch E, Newman WG, Kleckers AR, Francomano CA, Govindaiah V, Singh L, Morrison S, Thomas JT, Warman ML . The mutational spectrum of brachydactyly type C. Am J Med Genet, 2002,112(3):291-296.
doi: 10.1002/ajmg.10777 pmid: 12357473 |
[45] |
Ishino T, Takeno S, Hirakawa K . Novel NOG mutation in Japanese patients with stapes ankylosis with broad thumbs and toes. Eur J Med Genet, 2015,58(9):427-432.
doi: 10.1016/j.ejmg.2015.06.005 pmid: 26211601 |
[46] |
Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science, 1998,280(5368):1455-1457.
doi: 10.1126/science.280.5368.1455 pmid: 9603738 |
[47] |
Li Y, Laue K, Temtamy S, Aglan M, Kotan LD, Yigit G, Canan H, Pawlik B, Nürnberg G, Wakeling EL, Quarrell OW, Baessmann I, Lanktree MB, Yilmaz M, Hegele RA, Amr K, May KW, Nürnberg P, Topaloglu AK, Hammerschmidt M, Wollnik B . Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in Chondroitin Synthase 1, a potential target of BMP signaling. Am J Hum Genet, 2010,87(6):757-767.
doi: 10.1016/j.ajhg.2010.10.003 |
[48] |
Hojo H, Ohba S, Taniguchi K, Shirai M, Yano F, Saito T, Ikeda T, Nakajima K, Komiyama Y, Nakagata N, Suzuki K, Mishina Y, Yamada M, Konno T, Takato T, Kawaguchi H, Kambara H, Chung UI . Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem, 2013,288(14):9924-9932.
doi: 10.1074/jbc.M112.409342 pmid: 23423383 |
[49] |
Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP. IHH signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development, 2004,131(6):1309-1318.
doi: 10.1242/dev.01006 pmid: 14973297 |
[50] |
Zhang J, Tan X, Li W, Wang Y, Wang J, Cheng X, Yang X . Smad4 is required for the normal organization of the cartilage growth plate. Dev Biol, 2005,284(2):311-322.
doi: 10.1016/j.ydbio.2005.05.036 pmid: 16023633 |
[51] |
Zhang D, Schwarz EM, Rosier RN, Zuscik MJ, Puzas JE, O'Keefe RJ. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res, 2003,18(9):1593-1604.
doi: 10.1359/jbmr.2003.18.9.1593 pmid: 12968668 |
[52] |
Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A . BMP and IHH/PTHrP signaling interact to coordinate chondrocyte proliferation and differrentiation. Development, 2001,128(22):4523-4534.
pmid: 11714677 |
[53] |
Kamiya N, Kobayashi T, Mochida Y, Yu PB, Yamauchi M, Kronenberg HM, Mishina Y . Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res, 2010,25(2):200-210.
doi: 10.1359/jbmr.090806 pmid: 19874086 |
[54] |
Kamiya N, Ye L, Kobayashi T, Mochida Y, Yamauchi M, Kronenberg HM, Feng JQ, Mishina Y . BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development, 2008,135(22):3801-3811.
doi: 10.1242/dev.025825 pmid: 18927151 |
[55] |
Liu Z, Tang Y, Qiu T, Cao X, Clemens TL . A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. J Biol Chem, 2006,281(25):17156-17163.
doi: 10.1074/jbc.M513812200 pmid: 16621789 |
[56] |
Rawadi G, Vayssière B, Dunn F, Baron R, Roman-Roman S . BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res, 2003,18(10):1842-1853.
doi: 10.1359/jbmr.2003.18.10.1842 pmid: 14584895 |
[57] |
Rodríguez-Carballo E, Ulsamer A, Susperregui AR, Manzanares-Céspedes C, Sánchez-García E, Bartrons R, Rosa JL, Ventura F . Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J Bone Miner Res, 2011,26(4):718-729.
doi: 10.1002/jbmr.260 pmid: 20878775 |
[58] | Yang X, Wang B . Etiology, classification and treatment of brachydactyly. J Tissue Eng Reconst Surg, 2015,11(6):389-395. |
杨茜, 王斌 . 先天性短指畸形的发病机制、分类及治疗进展. 组织工程与重建外科杂志, 2015,11(6):389-395. |
[1] | 龚一鸣, 王翔宇, 贺小云, 刘玉芳, 余平, 储明星, 狄冉. 绵羊FecB突变对BMPR1B活性及BMP/SMAD通路的影响研究进展[J]. 遗传, 2023, 45(4): 295-305. |
[2] | 马捷, 黄露杰, 张巧霞, 朱艳, 钱露. 以A2型短指(趾)症为案例的医学遗传学PBL教学设计[J]. 遗传, 2023, 45(2): 176-183. |
[3] | 郑鹏飞, 谢海波, 朱盼盼, 赵呈天. 斑马鱼神经底板处神经元的分布及特征[J]. 遗传, 2022, 44(6): 510-520. |
[4] | 万星琦, 魏婉珍, 郭胜良, 崔一笑, 景雪莹, 黄露杰, 马捷. BMP2基因远程调控元件的功能分析[J]. 遗传, 2022, 44(12): 1141-1147. |
[5] | 贾婷婷, 雷蕾, 吴歆媛, 蔡顺有, 陈艺璇, 薛钰. 二甲双胍对斑马鱼骨骼发育及损伤修复的机制研究[J]. 遗传, 2022, 44(1): 68-79. |
[6] | 张春霞, 刘峰. 造血干细胞发育过程中的信号通路调控[J]. 遗传, 2021, 43(4): 295-307. |
[7] | 范晴晴, 孟飞龙, 房冉, 李高鹏, 赵小立. Wnt信号通路在毛细胞分化和再生过程中的作用[J]. 遗传, 2017, 39(10): 897-907. |
[8] | 王敏,石翾,黄翔,刘小凤,覃玉凤,刘小红,陈瑶生,何祖勇. 应用RGS双荧光替代性报告载体提高CRISPR/Cas9对猪BMP15基因的打靶效率[J]. 遗传, 2017, 39(1): 48-55. |
[9] | 张蔓丽, 卢彦平, 李亚里. 初级纤毛与Wnt信号通路相关性研究进展[J]. 遗传, 2015, 37(3): 233-239. |
[10] | 王慧, 李光, 王义权. 文昌鱼Hedgehog基因敲除和突变体表型分析[J]. 遗传, 2015, 37(10): 1036-1043. |
[11] | 邱晓, 韦荣飞, 张令强, 贺福初. 肾脏发育中信号通路的调控作用[J]. 遗传, 2015, 37(1): 1-7. |
[12] | 许飞, 张进, 马端. Hippo/YAP和Wnt/β-catenin通路的对话[J]. 遗传, 2014, 36(2): 95-102. |
[13] | 陈志强 韩新焕 曹新. Sonic Hedgehog信号通路与内耳发育调控[J]. 遗传, 2013, 35(9): 1058-1064. |
[14] | 钱光辉,王义权. Wnt信号通路与后口动物体轴的进化发育[J]. 遗传, 2011, 33(7): 684-694. |
[15] | 张玉,郑增长,葛军,张鸿雁,黄延旺,宋红生. 果蝇早老素基因的研究进展[J]. 遗传, 2011, 33(11): 1164-1170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: