遗传 ›› 2020, Vol. 42 ›› Issue (10): 1004-1016.doi: 10.16288/j.yczz.20-144
收稿日期:
2020-08-08
修回日期:
2020-10-02
出版日期:
2020-10-20
发布日期:
2020-10-15
通讯作者:
马芳
E-mail:mafangmed@126.com
作者简介:
张悦,在读硕士研究生,专业方向:母婴医学。E-mail: 基金资助:
Yue Zhang1, Ying Feng2, Fang Ma1,3()
Received:
2020-08-08
Revised:
2020-10-02
Online:
2020-10-20
Published:
2020-10-15
Contact:
Ma Fang
E-mail:mafangmed@126.com
Supported by:
摘要:
滋养层细胞对维持正常胚胎植入、生长发育有重要作用。研究停育胚胎的滋养层细胞的基因表达差异有助于了解胚胎发育停止或不良妊娠结局的发生发展机制。本研究通过对26例正常妊娠、胚胎停育妇女的绒毛组织进行全转录组测序和初步生物信息学分析,发现胚胎停育组存在436个差异基因,其中406个mRNA为显著上调基因,32个mRNA为显著下调基因。基因富集分析显示这些基因显著富集于免疫相关功能、细胞间黏附等方面,如淋巴细胞激活、髓系细胞激活、细胞外基质及胶原连接等,其潜在调控通路富集到补体及凝血级联反应和细胞外基质降解等条目。此外,本研究利用WGCNA共表达分析得到和差异基因存在共表达关系的lncRNA。根据模块功能不同,绘制了两个网络图,可得4个关键基因,分别为VSIG4、C1QC、CD36和SPP1。本研究得到的这些差异基因可作为对胚胎停育具有潜在影响的关键分子,所富集到的条目可为深入了解胚胎发育停止或不良妊娠结局的病因及机制提供理论依据及方向。
张悦, 冯颖, 马芳. 早期停育胚胎的滋养层细胞相关基因与特征分析[J]. 遗传, 2020, 42(10): 1004-1016.
Yue Zhang, Ying Feng, Fang Ma. Related genes and characteristic analysis of trophoblast cells during early embryo developmental cessation[J]. Hereditas(Beijing), 2020, 42(10): 1004-1016.
表1
患者临床信息(参与转录组测序的临床样本)"
序号 | 临床诊断 | 年龄(岁) | 孕产次 | 孕周(d) | 是否可探胎心 | β-HCG(mIU/mL) |
---|---|---|---|---|---|---|
1 | 人工流产 | 24 | G2P0+1 | 42 | 胎芽不清 | - |
2 | 人工流产 | 34 | G4P0+3 | 43 | 胎芽不清 | - |
3 | 人工流产 | 29 | G3P1+1 | 49 | 可见胎心搏动 | - |
4 | 人工流产 | 31 | G2P1 | 47 | 可见胎心搏动 | - |
5 | 人工流产 | 28 | - | 51 | 可见胎心搏动 | - |
6 | 胚胎停育 | 30 | 55 | 未见胎心 | 11,951.4 | |
7 | 胚胎停育 | 36 | G2P1 | 50 | 未见胎心 | 12,612.1 |
8 | 胚胎停育 | 27 | G1P0 | 57 | 未见胎心 | 69,220 |
9 | 胚胎停育 | 27 | G1P0 | 80 | 未见胎心 | - |
10 | 胚胎停育 | 33 | G1P0 | 59 | 未见胎心 | 32,594.4 |
表2
实时荧光定量PCR引物序列表"
序列 | 类型 | 基因名称 | 上游序列(5?→3?) | 下游序列(5?→3?) |
---|---|---|---|---|
1 | mRNA | C1QC | ATCCTGGGAAAAATGGCCCC | GAGGACCGCGTTGAATCTGA |
2 | VSIG4 | TCCAGCAGGCAAAGTACCAG | GTTTCTGGACACGGAGCTCA | |
3 | SPP1 | GATGACCATGTGGACAGCCA | AACCACACTATCACCTCGGC | |
4 | CD36 | GACCGAGGAAGCCACTTTGA | TAAGCAGGTCTCCAACTGGC | |
5 | NCKAP1L | TGTCTTCCACTCCCGAATGC | TGCAGTGGACAAAGTGAGCA | |
6 | FGD2 | TGCTACGCATTCCTCACTGG | ATAGAGCACGAGGGGGTCAT | |
7 | LILRB5 | ACCCTGCTGTGTCAGTCATG | GTAGGACCTGATTGCGCTGT | |
8 | FOLR2 | GCACCACAAGACAAAGCCAG | CAGGTTGGGTGAGCACTCAT | |
9 | DPPA3 | CCAGGGTCTCCACAAATGCT | ATTTCCCTGAGGACTGCTGC | |
10 | MX1 | TCGGAGGCTACAGGAAGACT | TTTGCGATGTCCACTTCGGA | |
11 | lncRNA | CLRN1-AS1 | GAAAGTCTGAAGCCAGGCCT | CTTTGGGCTTGCACAGTCAC |
12 | AC104809.4 | CGTGGGCTCGTCTAAGTGTT | GCACTGAGCTGTTTGCAGTC | |
13 | LINC01136 | ACCTCAGAGGCTACCCACAT | AGAAGAAATCCAGGGGCTGC | |
14 | USP27X-AS1 | TGCAACCAGAGGAACTGCAA | AGGTGGACCTATGGGCTTCT |
表3
差异mRNA的KEGG富集分析(置信度最高的前10条信号通路)"
通路二级分类(B类) | 通路 | P值 | q值 | 通路号 | 富集到的基因 |
---|---|---|---|---|---|
免疫系统 (immune system) | 补体及凝血级联反应(complement and coagulation cascades) | 3.70E-07 | 9.07E-05 | ko04610 | C7、CLU、F13A1、VSIG4、C1QC、ITGB2、ITGAM、C3AR1、C1QB、C1QA、C5AR1、CFD、CR1 |
信号分子与相互作用 (signaling molecules and interaction) | 细胞外基质 (cell adhesion molecules) | 3.78E-07 | 1.16E-03 | ko04514 | ITGAL、SPP1、CD4、PTPRC、SIGLEC1、NRCAM、MAG、CD36、LRRC4、VTCN1、ITGB2、NFASC、ITGAM、HLA-DOA、HLA-DRA、HLA-C、HLA-G、HLA-A、HLA-B |
运输和分解代谢 (transport and catabolism) | 吞噬体 (phagosome) | 2.54E-06 | 2.07E-04 | ko04145 | MSR1、CORO1A、COMP、NCF2、CD36、TLR2、FCGR2A、FCGR1A、PLA2R1、ITGB2、CTSS、CYBB、ITGAM、CD14、HLA-DOA、HLA-DRA、HLA-C、HLA-G、HLA-A、HLA-B、MRC1、RAB7B |
感染性疾病 (infectious diseases) | 金黄色葡萄球菌感染 (Staphylococcus aureus infection) | 3.84E-06 | 2.35E-04 | ko05150 | ITGAL、FCGR2A、FCGR1A、C1QC、ITGB2、ITGAM、FPR2、FPR1、C3AR1、C1QB、C1QA、C5AR1、CFD、HLA-DOA、HLA-DRA |
感染性疾病 (infectious diseases) | 阿米巴病 (amoebiasis) | 6.45E-06 | 3.16E-04 | ko05146 | GNA15、LAMB4、LAMA1、TLR2、PLCB2、ITGB2、CXCL1、PRKCB、ITGAM、CD14、PIK3CD、RAB7B |
免疫系统 (immune system) | 血小板激活 (platelet activation) | 1.59E-05 | 6.48E-04 | ko04611 | LCP2、PTGS1、P2RX1、PLCB2、PIK3R5、FCGR2A、FCER1G、PTGIR、GUCY1A3、SYK、PIK3CD、RASGRP1、PLCG2 |
感染性疾病 (infectious diseases) | 肺结核 (tuberculosis) | 3.59E-05 | 1.16E-03 | ko05152 | CD74、CORO1A、LSP1、TLR2、FCGR2A、FCGR1A、PLA2R1、FCER1G、ITGB2、CTSS、SYK、ITGAM、CD14、TLR1、CR1、HLA-DOA、HLA-DRA、MRC1 |
免疫系统 (immune system) | FcγR 介导的吞噬作用 (Fc gamma R-mediated phagocytosis) | 2.01E-04 | 2.07E-04 | ko04666 | WAS、PTPRC、HCK、DOCK2、BIN1、FCGR2A、FCGR1A、PLPP3、SYK、PRKCB、PIK3CD、PLCG2 |
生长发育 (development) | 破骨细胞分化 (osteoclast differentiation) | 0.000123966 | 3.37E-03 | ko04380 | TYROBP、LCP2、SPI1、TREM2、LILRB1、LILRB5、NCF2、FCGR2A、FCGR1A、SYK、PIK3CD、CSF1、PLCG2、LILRA6 |
感染性疾病 (infectious diseases) | 疟疾 (malaria) | 0.000277305 | 6.79E-03 | ko05144 | ITGAL、COMP、CCL2、CD36、TLR2、ITGB2、CR1 |
[1] |
Staud F, Karahoda R . Trophoblast: The central unit of fetal growth, protection and programming. Int J Biochem Cell Biol, 2018,105:35-40.
doi: 10.1016/j.biocel.2018.09.016 pmid: 30266525 |
[2] |
Moser G, Windsperger K, Pollheimer J, de Sousa Lopes SC, Huppertz B,. Human trophoblast invasion: new and unexpected routes and functions. Histochem Cell Biol, 2018,150(4):361-370.
doi: 10.1007/s00418-018-1699-0 pmid: 30046889 |
[3] |
Baines KJ, Renaud SJ . Transcription factors that regulate trophoblast development and function. Prog Mol Biol Transl Sci, 2017,145:39-88.
doi: 10.1016/bs.pmbts.2016.12.003 pmid: 28110754 |
[4] |
Harris LK, Jones CJ, Aplin JD . Adhesion molecules in human trophoblast - a review. II. extravillous trophoblast. Placenta, 2009,30(4):299-304.
doi: 10.1016/j.placenta.2008.12.003 |
[5] |
Chung TW, Park MJ, Kim HS, Choi HJ, Ha KT . Integrin αVβ3 and αVβ5 are required for leukemia inhibitory factor-mediated the adhesion of trophoblast cells to the endometrial cells. Biochem Biophys Res Commun, 2016,469(4):936-940.
doi: 10.1016/j.bbrc.2015.12.103 pmid: 26723254 |
[6] |
Huppertz B . Traditional and new routes of trophoblast invasion and their implications for pregnancy diseases. Int J Mol Sci, 2019,21(1):289.
doi: 10.3390/ijms21010289 |
[7] |
Malik A, Pal R, Gupta SK . Interdependence of JAK-STAT and MAPK signaling pathways during EGF-mediated HTR-8/SVneo cell invasion. PLoS One, 2017,12(5):e0178269.
doi: 10.1371/journal.pone.0178269 pmid: 28542650 |
[8] |
Huang ZY, Li SW, Fan W, Ma QH . Transforming growth factor β1 promotes invasion of human JEG-3 trophoblast cells via TGF-β/Smad3 signaling pathway. Oncotarget, 2017,8(20):33560-33570.
doi: 10.18632/oncotarget.16826 pmid: 28432277 |
[9] |
Chitu V, Stanley ER . Regulation of embryonic and postnatal development by the CSF-1 receptor. Curr Top Dev Biol, 2017,123:229-275.
doi: 10.1016/bs.ctdb.2016.10.004 pmid: 28236968 |
[10] |
Ding JL, Yin TL, Yan NN, Cheng YX, Yang J . FasL on decidual macrophages mediates trophoblast apoptosis: A potential cause of recurrent miscarriage. Int J Mol Med, 2019,43(6):2376-2386.
doi: 10.3892/ijmm.2019.4146 pmid: 30942389 |
[11] |
Shaik R, Ramakrishna W . Genes and Co-Expression modules common to drought and bacterial stress responses in arabidopsis and rice. PLoS One, 2013,8(10):e77261.
doi: 10.1371/journal.pone.0077261 pmid: 24130868 |
[12] |
Robinson MD, McCarthy DJ, Smyth GK,. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[13] |
Takeshita A, Kusakabe KT, Hiyama M, Kuniyoshi N, Kondo T, Kano K, Kiso Y, Okada T . Dynamics and reproductive effects of complement factors in the spontaneous abortion model of CBA/J×DBA/2 mice. Immunobiology, 2014,219(5):385-391.
doi: 10.1016/j.imbio.2014.01.001 |
[14] |
Huang J, Qin H, Yang YH, Chen XY, Zhang JM, Laird S, Wang CC, Chan TF, Li TC . A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction, 2017,153(6):749-758.
doi: 10.1530/REP-16-0574 pmid: 28283674 |
[15] |
Yurdakan G, Ekem TE, Bahadir B, Gun BD, Kuzey GM, Ozdamar SO . Expression of adhesion molecules in first trimester spontaneous abortions and their role in abortion pathogenesis. Acta Obstet Gynecol Scand, 2008,87(7):775-782.
doi: 10.1080/00016340802177412 pmid: 18607815 |
[16] |
Soylu Karapınar O, Benk Şilfeler D, Dolapçıoğlu K, Keskin Kurt R, Beyazıt A . The effect of molar pregnancies on platelet parameters. J Obstet Gynaecol, 2016,36(7):912-915.
doi: 10.1080/01443615.2016.1174823 pmid: 27183899 |
[17] |
Girardi G, Salmon JB . The role of complement in pregnancy and fetal loss. Autoimmunity, 2003,36(1):19-26.
doi: 10.1080/0891693031000067322 pmid: 12765467 |
[18] |
Kouser L, Madhukaran SP, Shastri A, Saraon A, Ferluga J, Al-Mozaini M, Kishore U . Emerging and novel functions of complement protein C1q. Front Immunol, 2015,6:317.
doi: 10.3389/fimmu.2015.00317 pmid: 26175731 |
[19] | Liu FL, Zhou J, Zhang W, Wang H . Epigenetic regulation and related diseases during placental development. Hereditas (Beijing), 2017,39(4):263-275. |
刘福林, 周瑾, 张蔚, 汪晖 . 胎盘发育过程中的表观遗传学改变及其相关疾病. 遗传, 2017,39(4):263-275. | |
[20] | Lai XM, Wang YX . Trophoblastic invasion and its regulatory factors. Chin J Birth Heal Hered, 2007,15(3):1-3. |
赖雪梅, 王应雄 . 滋养层侵袭力及其调控因素. 中国优生与遗传杂志, 2007,15(3):1-3. | |
[21] |
Burton GJ, Jauniaux E . Pathophysiology of placental- derived fetal growth restriction. Am J Obstet Gynecol, 2018,218(2S):S745-S761.
doi: 10.1016/j.ajog.2017.11.577 pmid: 29422210 |
[22] |
James-Allan LB, Whitley GS, Leslie K, Wallace A, Cartwright JE . Decidual cell regulation of trophoblast is altered in pregnancies at risk of pre-eclampsia. J Mol Endocrinol, 2018.
pmid: 32580159 |
[23] |
Zadrozna M, Nowak B, Marcinek A, Duc J . Villous trophoblast cell turnover in placentas from preterm pregnancy and pregnancy complicated by intrauterine growth restriction (IUGR). Folia Biol (Krakow), 2009,58(1-2):79-83.
doi: 10.3409/fb58_1-2.79-83 |
[24] |
Check JH, Aly J, Chang E . Improving the chance of successful implantation-Part I-Embryo attachment to the endometrium and adequate trophoblast invasion. Clin Exp Obstet Gynecol, 2016,43(6):787-791.
pmid: 29944223 |
[25] |
Burton GJ, Jauniaux E . The cytotrophoblastic shell and complications of pregnancy. Placenta, 2017,60:134-139.
doi: 10.1016/j.placenta.2017.06.007 pmid: 28651899 |
[26] |
Yang WM, Lu ZY, Zhi ZF, Liu LL, Deng LJ, Jiang XL, Pang LH . High-throughput transcriptome-Seq and small RNA-Seq reveal novel functional genes and microRNAs for early embryonic arrest in humans. Gene, 2019,697:19-25.
doi: 10.1016/j.gene.2018.12.084 pmid: 30776465 |
[27] |
Pan HT, Ding HG, Fang M, Yu B, Cheng Y, Tan YJ, Fu QQ, Lu BB, Cai HG, Jin X, Xia XQ, Zhang T . Proteomics and bioinformatics analysis of altered protein expression in the placental villous tissue from early recurrent miscarriage patients. Placenta, 2018,61:1-10.
doi: 10.1016/j.placenta.2017.11.001 pmid: 29277264 |
[28] |
Atanasova MA, Konova EI, Aleksovska TA, Todorova KN, Georgieva MN, Lukanov TH . Anti-fibrillin-1 autoantibodies in normal pregnancy and recurrent pregnancy loss. Autoimmun Rev, 2011,10(3):131-136.
doi: 10.1016/j.autrev.2010.09.003 |
[29] |
Vogt L, Schmitz N, Kurrer MO, Bauer M, Hinton HI, Behnke S, Gatto D, Sebbel P, Beerli RR, Sonderegger I, Kopf M, Saudan P, Bachmann MF . VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest, 2006,116(10):2817-2826.
doi: 10.1172/JCI25673 pmid: 17016562 |
[30] |
Helmy KY, Katschke KJ, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M,. CRIg: A macrophage complement receptor required for phagocytosis of circulating pathogens. Cell, 2006,124(5):915-927.
doi: 10.1016/j.cell.2005.12.039 pmid: 16530040 |
[31] |
Kim DD, Miwa T, Kimura Y, Schwendener RA, van Lookeren Campagne M, Song WC,. Deficiency of decay- accelerating factor and complement receptor 1-related gene/protein y on murine platelets leads to complement- dependent clearance by the macrophage phagocytic receptor CRIg. Blood, 2008,112(4):1109-1119.
doi: 10.1182/blood-2008-01-134304 pmid: 18524992 |
[32] |
Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcad G, Bellier B, Togbe D, Ryffel B, Klatzmann D, Baron-Bodo V, Moingeon P . The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol, 2016,10(3):695-704.
doi: 10.1038/mi.2016.87 pmid: 27731323 |
[33] |
Girardi G . Complement inhibition keeps mothers calm and avoids fetal rejection. Immunol Invest, 2008,37(5):645-659.
doi: 10.1080/08820130802191615 pmid: 18716942 |
[34] |
Girardi G, Prohászka Z, Bulla R, Tedesco F, Scherjon S . Complement activation in animal and human pregnancies as a model for immunological recognition. Mol Immunol, 2011,48(14):1621-1630
doi: 10.1016/j.molimm.2011.04.011 |
[35] |
Teirilä L, Heikkinen-Eloranta J, Kotimaa J, Meri S, Lokki AI . Regulation of the complement system and immunological tolerance in pregnancy. Semin Immunol, 2019,45:101337.
doi: 10.1016/j.smim.2019.101337 pmid: 31757607 |
[36] | Sun J, Jin L . Trophinin, tastin, bystin complex binds to embryo initiation. Chin J Birth Heal Hered, 2005,13(5):113-114. |
孙虹, 靳镭 . Trophinin, tastin, bystin复合体与胚胎起始黏附. 中国优生与遗传杂志, 2005,13(5):113-114. | |
[37] |
Oz HS, Ebersole JL, de Villiers WJS,. The macrophage pattern recognition scavenger receptors SR-A and CD36 protect against microbial induced pregnancy loss. Inflamm Res, 2011,60(1):93-97.
doi: 10.1007/s00011-010-0241-1 |
[38] | Silverstein RL, Febbraio M . CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, behavior. SciSignal, 2009, 2(72): re3. |
[39] |
Abumrad NA, Goldberg IJ . CD36 actions in the heart: Lipids, calcium, inflammation, repair and more? Biochim Biophys Acta, 2016,1861(10):1442-1449.
doi: 10.1016/j.bbalip.2016.03.015 pmid: 27004753 |
[40] |
Wang JC, Li YS . CD36 tango in cancer: signaling pathways and functions. Theranostics, 2019,9(17):4893-4908.
doi: 10.7150/thno.36037 pmid: 31410189 |
[41] |
Johnson GA, Burghardt RC, Bazer FW, Spencer TE . Osteopontin: Roles in implantation and placentation. Biol Reprod, 2003,69(5):1458-1471.
doi: 10.1095/biolreprod.103.020651 pmid: 12890718 |
[42] | Yu QB, Wang YX . Cell adhesion molecules to the embryo implantatio. Chin J Birth Heal Hered, 2005,13(1):6-8. |
余秋波, 王应雄 . 细胞粘附分子与胚胎着床. 中国优生与遗传杂志, 2005,13(1):6-8. | |
[43] |
Nardo LG, Nikas G, Makrigiannakis A . Molecules in blastocyst implantation. Role of matrix metalloproteinases, cytokines and growth factors. J Reprod Med, 2003,48(3):137-147.
pmid: 12698769 |
[44] |
Gonzalez I, Munita R, Agirre E, Dittmer TA, Gysling K, Misteli T, Luco RF . A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature . Nat Struct Mol Biol, 2015,22(5):370-376.
doi: 10.1038/nsmb.3005 pmid: 25849144 |
[45] |
Lieberman J . Tapping the RNA world for therapeutics. Nat Struct Mol Biol, 2018,25(5):357-364.
doi: 10.1038/s41594-018-0054-4 pmid: 29662218 |
[46] |
Pérez-Palacios R, Fauque P, Teissandier A, Bourc'his D. Deciphering the early mouse embryo transcriptome by Low-Input RNA-Seq. Methods Mol Biol, 2021,2214:189-205.
pmid: 32944911 |
[47] |
Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC, Cvejic A, Teichmann SA . Power analysis of single-cell RNA-sequencing experiments. Nat Methods, 2017,14(4):381-387.
doi: 10.1038/nmeth.4220 pmid: 28263961 |
[1] | 张恩权, 蔡伟聪, 李桂玲, 李健, 刘静雯. 赫氏颗石藻(Emiliania huxleyi)响应病毒感染的microRNA转录组分析[J]. 遗传, 2021, 43(11): 1088-1100. |
[2] | 屈亮, 李素, 仇华吉. 单细胞RNA测序技术在病毒研究中的应用[J]. 遗传, 2020, 42(3): 269-277. |
[3] | 郑婷, 甘麦邻, 沈林園, 牛丽莉, 郭宗义, 王金勇, 张顺华, 朱砺. circRNA及其调控动物骨骼肌发育研究进展[J]. 遗传, 2020, 42(12): 1178-1191. |
[4] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[5] | 刘玄石, 李巍. 早产相关基因的挖掘与特征分析[J]. 遗传, 2019, 41(5): 413-421. |
[6] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[7] | 赵小蕾, 左晓宇, 覃继恒, 梁岩, 张乃尊, 栾奕昭, 饶绍奇. 基于蛋白质互作知识的生物学通路扩充新方法[J]. 遗传, 2014, 36(4): 387-394. |
[8] | 郭昊,朱云平,李栋,贺福初. 肿瘤相关生物学通路的发现和建模[J]. 遗传, 2011, 33(8): 809-819. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: