[1] Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res, 2012, 40(Database issue): D109–D114. <\p>
[2] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28(1): 27–30. <\p>
[3] Chen L, Zhang LC, Zhao Y, Xu LD, Shang YK, Wang Q, Li W, Wang H, Li X. Prioritizing risk pathways: a novel association approach to searching for disease pathways fusing SNPs and pathways. Bioinformatics, 2009, 25(2): 237–242. <\p>
[4] Lee E, Chuang HY, Kim JW, Ideker T, Lee D. Inferring pathway activity toward precise disease classification. PLoS Comput Biol, 2008, 4(11): e1000217. <\p>
[5] Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships. PLoS ONE, 2009, 4(2): e4346. <\p>
[6] Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res, 2002, 30(1): 42–46. <\p>
[7] Kanehisa M. The KEGG database. Novartis Found Symp, 2002, 247: 91–101, discussion 101–103, 119–128, 244– 152. <\p>
[8] Li J. Linking UniProtKB/Swiss-Prot Proteins to Pathway Information. Switzerland: University of Geneva, 2010. <\p>
[9] Dale JM, Popescu L, Karp PD. Machine learning methods for metabolic pathway prediction. BMC Bioinformatics, 2010, 11: 15. <\p>
[10] Chung TS, Kim J, Kim K, Kim JH. Biological Pathway Extension Using Microarray Gene Expression Data. Ge-nomics & Informatics, 2008, 6(4): 202–209. <\p>
[11] Herrgard MJ, Covert MW, Palsson BO. Reconciling gene expression data with known genome-scale regulatory net-work structures. Genome Res, 2003, 13(11): 2423–2434. <\p>
[12] Luo WJ, Hankenson KD, Woolf PJ. Learning transcrip-tional regulatory networks from high throughput gene ex-pression data using continuous three-way mutual informa-tion. BMC Bioinformatics, 2008, 9: 467. <\p>
[13] Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ER. Growing genetic regulatory networks from seed genes. Bioinformatics, 2004, 20(8): 1241–1247. <\p>
[14] Hodges AP, Woolf P, He Y. BN+1 Bayesian network ex-pansion for identifying molecular pathway elements. Commun Integr Biol, 2010, 3(6): 549–554. <\p>
[15] Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethura-man A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R, Gene On-tology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 2004, 32(Database issue): D258–D261. <\p>
[16] McDowall MD, Scott MS, Barton GJ. PIPs: human pro-tein-protein interaction prediction database. Nucleic Acids Res, 2009, 37(Database issue): D651–D656. <\p>
[17] Schaefer MH, Fontaine JF, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA. HIPPIE: Integrating protein interaction networks with experiment based qual-ity scores. PLoS ONE, 2012, 7(2): e31826. <\p>
[18] 杨胜利. 系统生物学研究进展. 中国科学院院刊, 2004, 19(1): 31–34. <\p>
[19] 孙景春, 徐晋麟, 李亦学, 石铁流. 大规模蛋白质相互作用数据的分析与应用. 科学通报, 2005, 50(19): 2055– 2060. <\p>
[20] Xiao GH, Pan W. Gene function prediction by a combined analysis of gene expression data and protein-protein in-teraction data. J Bioinform Comp |