[1] Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998, 95(25): 14863-14868.[2] D'Haeseleer P. How does gene expression clustering work? Nat Biotechnol, 2005, 23(12): 1499-1501.[3] Janes KA, Yaffe MB. Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol, 2006, 7(11): 820-828.[4] Sherlock G. Analysis of large-scale gene expression data. Curr Opin Immunol, 2000, 12(2): 201-205.[5] Tjaden B. An approach for clustering gene expression data with error information. BMC Bioinformatics, 2006, 7: 17.[6] Wilkin GA, Huang XZ. A practical comparison of two K-Means clustering algorithms. BMC Bioinformatics, 2008, 9(Suppl. 6): S19.[7] Blackhall FH, Wigle DA, Jurisica I, Pintilie M, Liu N, Darling G, Johnston MR, Keshavjee S, Waddell T, Winton T, Shepherd FA, Tsao MS. Validating the prognostic value of marker genes derived from a non-small cell lung cancer microarray study. Lung Cancer, 2004, 46(2): 197-204.[8] Dembélé D, Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics, 2003, 19(8): 973-980.[9] Kluger Y, Basri R, Chang JT, Gerstein M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Research, 2003, 13(4): 703-716.[10] Lapointe J, Li CD, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA, 2004, 101(3): 811-816.[11] Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 2003, 34(2): 166-176.[12] Koumakpayi IH, Le Page C, Mes-Masson AM, Saad F. Hierarchical clustering of immunohistochemical analysis of the activated ErbB/PI3K/Akt/NF-κB signalling pathway and prognostic significance in prostate cancer. Br J Cancer, 2010, 102(7): 1163-1173.[13] Ma SG, Kosorok MR. Identification of differential gene pathways with principal component analysis. Bioinformatics, 2009, 25(7): 882-889.[14] Huang DS, Zheng CH. Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics, 2006, 22(15): 1855-1862.[15] Sandberg R, Ernberg I. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci USA, 2005, 102(6): 2052-2057.[16] Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science, 2005, 310(5754): 1646-1653.[17] Bild AH, Yao G, Chang JT, Wang QL, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA Jr, Marks JR, Dressman HK, West M, Nevins JR. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 2006, 439(7074): 353-357.[18] Ivakhno S, Armstrong JD. Non-linear dimensionality reduction of signaling networks. BMC Syst Biol, 2007, 1: 27.[19] Huang D W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res, 2009, 37(1): 1-13.[20] Curtis RK, Oreši? M, Vidal-Puig A. Pathways to the analysis of microarray data. Trends Biotechnol, 2005, 23(8): 429-435.[21] Dr?ghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global functional profiling of gene expression. Genomics, 2003, 81(2): 98-104.[22] Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics, 2007, 23(4): 401-407.[23] Zeeberg BR, Feng WM, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol, 2003, 4(4): R28.[24] Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, Tainsky MA. Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res, 2003, 31(13): 3775-3781.[25] Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol, 2003, 4(5): P3.[26] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550.[27] Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003, 34(3): 267-273.[28] Lee HK, Braynen W, Keshav K, Pavlidis P. ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics, 2005, 6: 269.[29] Nam D, Kim SB, Kim SK, Yang SJ, Kim SY, Chu IS. ADGO: analysis of differentially expressed gene sets using composite GO annotation. Bioinformatics, 2006, 22(18): 2249-2253.[30] Bauer S, Grossmann S, Vingron M, Robinson PN. Ontologizer 2.0-a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics, 2008, 24(14): 1650-1651.[31] Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol, 2007, 8(1): R3.[32] Tong W, Harris S, Cao X, Fang H, Shi L, Sun H, Fuscoe J, Harris A, Hong H, Xie Q, Perkins R, Casciano D. Development of public toxicogenomics software for microarray data management and analysis. Mutat Res, 2004, 549(1-2): 241-253.[33] Patel S, Lyons-Weiler J. caGEDA: a web application for the integrated analysis of global gene expression patterns in cancer. Appl Bioinformatics, 2004, 3(1): 49-62.[34] Reich M, Ohm K, Angelo M, Tamayo P, Mesirov JP. GeneCluster 2.0: an advanced toolset for bioarray analysis. Bioinformatics, 2004, 20(11): 1797-1798.[35] Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet, 2002, 31(1): 19-20.[36] Zhong S, Storch KF, Lipan O, Kao MC, Weitz CJ, Wong WH. GoSurfer: a graphical interactive tool for comparative analysis of large gene sets in Gene Ontology(TM) space. Appl Bioinformatics, 2004, 3(4): 261-264.[37] Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics, 2007, 23(23): 3251-3253.[38] Dean N, Raftery AE. Normal uniform mixture differential gene expression detection for cDNA microarrays. BMC Bioinformatics, 2005, 6: 173.[39] Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 2005, 6: 225.[40] di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol, 2005, 23(3): 377-383.[41] Ergün A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ. A network biology approach to prostate cancer. Mol Syst Biol, 2007, 3: 82.[42] Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet, 2006, 43(8): 691-698.[43] Xu JZ, Li YJ. Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics, 2006, 22(22): 2800-2805.[44] Sam L, Liu Y, Li J, Friedman C, Lussier YA. Discovery of protein interaction networks shared by diseases. Pac Symp Biocomput, 2007: 76-87.[45] Loganantharaj R, Chung J. Integrating diverse information to gain more insight into microarray analysis. J Biomed Biotechnol, 2009, 2009: 648987.[46] Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol, 2002, 20(4): 370-375.[47] Chen HC, Lee HC, Lin TY, Li WH, Chen BS. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics, 2004, 20(12): 1914-1927.[48] Chen KC, Wang TY, Tseng HH, Huang CYF, Kao CY. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics, 2005, 21(12): 2883-2890.[49] Swameye I, Müller TG, Timmer J, Sandra O, Klingmuller U. Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc Natl Acad Sci USA, 2003, 100(3): 1028-1033.[50] Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol, 2003, 1(1): E10.[51] 张云艳, 李雪, 隋丽华, 王琦, 李璞, 傅松滨. 卵巢癌中TGF-β/Smads传导通路的功能研究. 遗传学报, 2004, 31(8): 759-765.[52] 崔建军, 田庚善, 田地, 曾争. 干扰素信号传导通路与其基因组多态性网络模型的建立. 遗传, 2008, 30(6): 788-794.[53] Nagasaki M, Doi A, Matsuno H, Miyano S. A versatile petri net based architecture for modeling and simulation of complex biological processes. Genome Inform, 2004, 15(1): 180-197.[54] Ihekwaba A, Broomhead D, Grimley R, Benson N, Kell D. Sensitivity analysis of parameters controlling oscillatory signalling in the NF-κB pathway: the roles of IKK and IkBa. Syst Biol, 2004, 1(1): 93.[55] Tanabe L, Wilbur WJ. Tagging gene and protein names in biomedical text. Bioinformatics, 2002, 18(8): 1124-1132.[56] Chang JT, Schütze H, Altman RB. GAPSCORE: finding gene and protein names one word at a time. Bioinformatics, 2004, 20(2): 216-225.[57] Chen L, Friedman C. Extracting phenotypic information from the literature via natural language processing. Stud Health Technol Inform, 2004, 107(Pt 2): 758-762.[58] Hoffmann R, Krallinger M, Andres E, Tamames J, Blaschke C, Valencia A. Text mining for metabolic pathways, signaling cascades, and protein networks. Sci STKE, 2005, 2005(283): pe21.[59] Novichkova S, Egorov S, Daraselia N. MedScan, a natural language processing engine for MEDLINE abstracts. Bioinformatics, 2003, 19(13): 1699-1706.[60] Becker KG, Hosack DA, Dennis G Jr, Lempicki RA, Bright TJ, Cheadle C, Engel J. PubMatrix: a tool for multiplex literature mining. BMC Bioinformatics, 2003, 4: 61.[61] Glenisson P, Coessens B, van Vooren S, Mathys J, Moreau Y, De Moor B. TXTGate: profiling gene groups with text-based information. Genome Biol, 2004, 5(6): R43.[62] Corney DPA, Buxton BF, Langdon WB, Jones DT. BioRAT: extracting biological information from full-length papers. Bioinformatics, 2004, 20(17): 3206-3213.[63] Müller HM, Rangarajan A, Teal TK, Sternberg PW. Textpresso for neuroscience: searching the full text of thousands of neuroscience research papers. Neuroinformatics, 2008, 6(3): 195-204.[64] Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, Ghosh D, Pandey A, Chinnaiyan AM. Probabilistic model of the human protein-protein interaction network. Nat Biotechnol, 2005, 23(8): 951-959. |