遗传 ›› 2021, Vol. 43 ›› Issue (9): 835-848.doi: 10.16288/j.yczz.21-182
收稿日期:
2021-05-24
修回日期:
2021-07-25
出版日期:
2021-09-20
发布日期:
2021-08-05
通讯作者:
潘学峰
E-mail:xuefengpancam@aliyun.com
作者简介:
吕柯孬,在读硕士研究生,专业方向:分子生物学。E-mail: 基金资助:
Received:
2021-05-24
Revised:
2021-07-25
Online:
2021-09-20
Published:
2021-08-05
Contact:
Pan Xuefeng
E-mail:xuefengpancam@aliyun.com
Supported by:
摘要:
三核苷酸重复DNA序列扩增或缺失不稳定性与50多种人类神经退行性疾病有关。与疾病相关的三核苷酸重复拷贝数的增加或减少,影响了特定基因的表达,或因之产生具有细胞毒性的RNA和蛋白质已成为相关疾病的共有病理机制。现有的研究表明,疾病相关的三核苷酸重复拷贝数的改变有可能起因于相关三核苷酸重复DNA序列的异常DNA复制、修复、重组以及基因转录。有关人类遗传学研究也提示,发生在疾病相关的三核苷酸重复DNA部位的异常DNA复制、修复、重组或基因转录确有可能在三核苷酸重复DNA不稳定过程中发挥着关键作用。本文根据本课题组的研究经验,综述了近年来有关疾病相关三核苷酸重复不稳定性机制的研究进展,包括碱基突变不稳定、重复单元的扩增和缺失不稳定,以助更好地理解疾病相关三核苷酸重复DNA序列不稳定性的分子机制。
吕柯孬, 潘学峰. 人类神经退行性疾病相关的三核苷酸重复DNA序列不稳定性机制研究进展[J]. 遗传, 2021, 43(9): 835-848.
Kenao Lv, Xuefeng Pan. Progress on the mechanistic research of the trinucleotide repeat instabilities underlying human neurodegenerative diseases[J]. Hereditas(Beijing), 2021, 43(9): 835-848.
表1
与三核苷酸重复扩增相关的疾病信息汇总"
类型 | 疾病名称 | 基因 | 三核苷酸重 复DNA序列 | 基因 结构 | 染色体 定位 | 正常 重复数 | 异常 重复数 | 首次报 道时间 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
PolyQ 三核苷酸扩增性疾病 | 脊髓小脑共济失调 1型 | ATXN1 | CAG | ORF | 6p22.3 | 6~9 | 41~83 | 1993 | [16] |
脊髓小脑共济失调 2型 | ATXN2 | CAG | ORF | 12q24.12 | 14~32 | 33~200 | 1996 | [ | |
脊髓小脑共济失调 3型 | ATXN3 | CAG | ORF | 14q32.12 | 12~40 | 55~86 | 1994 | [ | |
脊髓小脑共济失调 6型 | CACNA1A | CAG | ORF | 19p13.13 | 4~18 | 21~33 | 1997 | [ | |
脊髓小脑共济失调 7型 | ATXN7 | CAG | ORF | 3p14.1 | 7~17 | 38~120 | 1997 | [ | |
脊髓小脑共济失调 12型 | PPP2R2B | CAG | 5′UTR | 5q32 | 7~41 | >51 | 1999 | [ | |
脊髓小脑共济失调 17型 | TBP | CAG | ORF | 6q27 | 25~44 | 47~63 | 2001 | [ | |
亨廷顿舞蹈病 | HTT | CAG | ORF | 4p16.3 | 6~35 | 36~250 | 1993 | [ | |
脊髓延髓肌萎缩 | AR | CAG | ORF | Xq12 | 9~36 | 38~62 | 1991 | [ | |
非polyQ 三核苷 酸扩增 性疾病 | 易碎性X综合征 | FMR1 | CGG | 5′UTR | Xq27.3 | 6~53 | >230 | 1991 | [ |
易碎性X智力低下(马丁-贝尔综合征) | FMR2 | CGG | 5′UTR | Xq28 | 6~53 | >200 | 1993 | [ | |
弗洛里德共济失调 | FXN | GAA | 内含子 | 9q21.11 | 7~34 | >70 | 1996 | [ | |
强直性肌营养不良 | DMPK | CTG | 3′UTR | 19q13.32 | 5~37 | >50 | 1992 | [ | |
脊髓小脑共济失调 8型 | SCA8 | CTG | ORF | 13q21.33 | 16~37 | 90~250 | 1999 | [ |
[1] |
Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen BE, van Ommen GJ, Blonden LA, Riggins GJ, Chastain JL, Kunst CB, Galjaard H, Caskey CT, Nelson DL, Oostra BA, Warren ST. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 1991, 65(5):905-914.
pmid: 1710175 |
[2] |
La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 1991, 352(6330):77-79.
doi: 10.1038/352077a0 |
[3] | Murmann AE, Gao QQ, Putzbach WE, Patel M, Bartom ET, Law CY, Bridgeman B, Chen SQ, McMahon KM, Thaxton CS, Peter ME. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Rep, 2018, 19(3):e45336. |
[4] | Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J, 2020, 39(1):e101112. |
[5] |
Kourkouta E, Weij R, González-Barriga A, Mulder M, Verheul R, Bosgra S, Groenendaal B, Puoliväli J, Toivanen J, van Deutekom JCT, Datson NA. Suppression of mutant protein expression in SCA3 and SCA1 mice using a CAG repeat-targeting antisense oligonucleotide. Mol Ther Nucleic Acids, 2019, 17:601-614.
doi: 10.1016/j.omtn.2019.07.004 |
[6] |
Langbehn DR, Stout JC, Gregory S, Mills JA, Durr A, Leavitt BR, Roos RAC, Long JD, Owen G, Johnson HJ, Borowsky B, Craufurd D, Reilmann R, Landwehrmeyer GB, Scahill RI, Tabrizi SJ, TRACK-HD and Track-On HD Groups. Association of CAG repeats with long-term progression in Huntington disease. JAMA Neurol, 2019, 76(11):1375-1385.
doi: 10.1001/jamaneurol.2019.2368 |
[7] |
Lieberman AP, Shakkottai VG, Albin RL. Polyglutamine repeats in neurodegenerative diseases. Annu Rev Pathol, 2019, 14:1-27.
doi: 10.1146/annurev-pathmechdis-012418-012857 pmid: 30089230 |
[8] |
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco- Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet, 1996, 14(3):269-276.
pmid: 8896555 |
[9] |
Massey TH, Jones L. The central role of DNA damage and repair in CAG repeat diseases. Dis Model Mech, 2018, 11(1): dmm031930.
doi: 10.1242/dmm.031930 |
[10] |
Ghosh R, Tabrizi SJ. Clinical features of Huntington's disease. Adv Exp Med Biol, 2018, 1049:1-28.
doi: 10.1007/978-3-319-71779-1_1 pmid: 29427096 |
[11] |
Cleary JD, Pattamatta A, Ranum LPW. Repeat-associated non-ATG (RAN) translation. J Biol Chem, 2018, 293(42):16127-16141.
doi: 10.1074/jbc.R118.003237 |
[12] | Wilson H, Politis M. Molecular imaging in Huntingtonʼs disease. Int Rev Neurobiol, 2018, 142:289-333. |
[13] | Hu WT, Sun GF, Liu X, Liu YR, Wang S, Peng T, Yang HC, Lu H. Clinical analysis of 10 cases of myotonic muscular dystrophy with brain damage. J Apopl Nerv Dis, 2019, 36(9):819-823. |
胡文涛, 孙桂芳, 刘希, 刘艳茹, 王赏, 彭涛, 杨贺成, 卢宏. 伴有脑部损害的强直性肌营养不良10例临床分析. 中风与神经疾病杂志, 2019, 36(9):819-823. | |
[14] | Stoyas CA, La Spada AR. The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. Handb Clin Neurol, 2018, 147:143-170. |
[15] |
Genetic Modifiers of Huntington’s Disease(GeM-HD)Consortium. CAG repeat not polyglutamine length determines timing of Huntington's disease onset. Cell, 2019, 178(4): 887-900.e14.
doi: 10.1016/j.cell.2019.06.036 |
[16] |
Orr HT, Chung M-y, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet, 1993, 4(3):221-226.
pmid: 8358429 |
[17] |
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Dürr A, Didierjean O, Stevanin G, Agid Y, Brice A. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet, 1996, 14(3):285-291.
pmid: 8896557 |
[18] |
Kim YE, Oh KW, Noh MY, Park J, Kim HJ, Park JE, Ki CS, Kim SH. Analysis of ATXN2 trinucleotide repeats in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging, 2018, 67: 201.e5-201.e8.
doi: 10.1016/j.neurobiolaging.2018.03.019 |
[19] |
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet, 1994, 8(3):221-228.
pmid: 7874163 |
[20] |
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat Genet, 1997, 15(1):62-69.
pmid: 8988170 |
[21] |
David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet, 1997, 17(1):65-70.
pmid: 9288099 |
[22] |
Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll- Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet, 1999, 23(4):391-392.
pmid: 10581021 |
[23] |
Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet, 2001, 10(14):1441-1448.
pmid: 11448935 |
[24] |
Gonzalez-Alegre P. Recent advances in molecular therapies for neurological disease: triplet repeat disorders. Hum Mol Genet, 2019, 28(R1):R80-R87.
doi: 10.1093/hmg/ddz138 |
[25] |
La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 1991, 352(6330):77-79.
doi: 10.1038/352077a0 |
[26] |
Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science, 1991, 252(5013):1711-1714.
pmid: 1675488 |
[27] | Linsalata AE, He F, Malik AM, Glineburg MR, Green KM, Natla S, Flores BN, Krans A, Archbold HC, Fedak SJ, Barmada SJ, Todd PK. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation. EMBO Rep, 2019, 20(9):e47498. |
[28] |
Knight SJ, Flannery AV, Hirst MC, Campbell L, Christodoulou Z, Phelps SR, Pointon J, Middleton-Price HR, Barnicoat A, Pembrey ME, Holland J, Oostra BA, Bobrow M, Davies KE. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell, 1993, 74(1):127-134.
pmid: 8334699 |
[29] |
Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Cañizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M. Friedreichʼs ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 1996, 271(5254):1423-1427.
pmid: 8596916 |
[30] |
Harley HG, Rundle SA, Reardon W, Myring J, Crow S, Brook JD, Harper PS, Shaw DJ. Unstable DNA sequence in myotonic dystrophy. Lancet, 1992, 339(8802):1125-1128.
pmid: 1349364 |
[31] |
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet, 1999, 21(4):379-384.
pmid: 10192387 |
[32] |
Lee JM, Zhang J, Su AI, Walker JR, Wiltshire T, Kang K, Dragileva E, Gillis T, Lopez ET, Boily MJ, Cyr M, Kohane I, Gusella JF, MacDonald ME, Wheeler VC. A novel approach to investigate tissue-specific trinucleotide repeat instability. BMC Syst Biol, 2010, 4:29.
doi: 10.1186/1752-0509-4-29 |
[33] |
Helma R, Bažantová P, Petr M, Adámik M, Renčiuk D, Tichý V, Pastuchová A, Soldánová Z, Pečinka P, Bowater RP, Fojta M, Brázdová M. p53 binds preferentially to non-B DNA structures formed by the pyrimidine-rich strands of GAA•TTC trinucleotide repeats associated with Friedreich's ataxia. Molecules, 2019, 24(11):2078.
doi: 10.3390/molecules24112078 |
[34] |
Ooi J, Langley SR, Xu XH, Utami KH, Sim B, Huang YH, Harmston NP, Tay YL, Ziaei A, Zeng RZ, Low D, Aminkeng F, Sobota RM, Ginhoux F, Petretto E, Pouladi MA. Unbiased profiling of isogenic Huntington disease hPSC-derived CNS and peripheral cells reveals strong cell-type specificity of CAG length effects. Cell Rep, 2019, 26(9): 2494-2508.e7.
doi: 10.1016/j.celrep.2019.02.008 |
[35] |
Morton AJ, Skillings EA, Wood NI, Zheng Z. Antagonistic pleiotropy in mice carrying a CAG repeat expansion in the range causing Huntington's disease. Sci Rep, 2019, 9(1):37.
doi: 10.1038/s41598-018-37102-8 pmid: 30631090 |
[36] |
Jones L, Houlden H, Tabrizi SJ. DNA repair in the trinucleotide repeat disorders. Lancet Neurol, 2017, 16(1):88-96.
doi: 10.1016/S1474-4422(16)30350-7 |
[37] |
Nolin SL, Glicksman A, Tortora N, Allen E, Macpherson J, Mila M, Vianna-Morgante AM, Sherman SL, Dobkin C, Latham GJ, Hadd AG. Expansions and contractions of the FMR1 CGG repeat in 5,508 transmissions of normal, intermediate, and premutation alleles. Am J Med Genet A, 2019, 179(7):1148-1156.
doi: 10.1002/ajmg.a.v179.7 |
[38] |
Khan E, Biswas S, Mishra SK, Mishra R, Samanta S, Mishra A, Tawani A, Kumar A. Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington’s disease (HD) and spinocerebellar ataxia (SCAs). Biochimie, 2019, 163:21-32.
doi: 10.1016/j.biochi.2019.05.001 |
[39] |
Santoro M, Fontana L, Maiorca F, Centofanti F, Massa R, Silvestri G, Novelli G, Botta A. Expanded [CCTG]n repetitions are not associated with abnormal methylation at the CNBP locus in myotonic dystrophy type 2 (DM2) patients. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(3):917-924.
doi: 10.1016/j.bbadis.2017.12.037 |
[40] |
Zafarullah M, Tassone F. Molecular biomarkers in fragile X syndrome. Brain Sci, 2019, 9(5):96.
doi: 10.3390/brainsci9050096 |
[41] | Chen HM. Clinical and molecular biology research of myotonic muscular dystrophy. Zhejiang Med J, 2019, 41(5):407-408, 418. |
陈慧敏. 强直性肌营养不良临床与分子生物学研究. 浙江医学, 2019, 41(5):407-408, 418. | |
[42] | Chen YY, Hao Y, Zhang J, Zhang X, Xie KM, Ding M, Gu WH. Capillary electrophoresis fragment analysis and clone sequencing in detection of dynamic mutations of spinocerebellar ataxia. Chin J Contemp Neurol Neurosurg, 2018, 18(3):192-197. |
陈园园, 郝莹, 张瑾, 张鑫, 谢坤铭, 丁铭, 顾卫红. 基于毛细管电泳的片段分析和克隆测序在脊髓小脑共济失调动态突变检测中的应用研究. 中国现代神经疾病杂志, 2018, 18(3):192-197. | |
[43] |
Westenberger A, Reyes CJ, Saranza G, Dobricic V, Hanssen H, Domingo A, Laabs BH, Schaake S, Pozojevic J, Rakovic A, Grütz K, Begemann K, Walter U, Dressler D, Bauer P, Rolfs A, Münchau A, Kaiser FJ, Ozelius LJ, Jamora RD, Rosales RL, Diesta CCE, Lohmann K, König IR, Brüggemann N, Klein C. A hexanucleotide repeat modifies expressivity of X-linked dystonia parkinsonism. Ann Neurol, 2019, 85(6):812-822.
doi: 10.1002/ana.25488 pmid: 30973967 |
[44] |
Ohshima K, Montermini L, Wells RD, Pandolfo M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem, 1998, 273(23):14588-14595.
pmid: 9603975 |
[45] |
Grabczyk E, Mancuso M, Sammarco MC. A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res, 2007, 35(16):5351-5359.
pmid: 17693431 |
[46] |
Jain A, Vale RD. RNA phase transitions in repeat expansion disorders. Nature, 2017, 546(7657):243-247.
doi: 10.1038/nature22386 |
[47] |
Burguete AS, Almeida S, Gao FB, Kalb R, Akins MR, Bonini NM. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. eLife, 2015, 4:e08881.
doi: 10.7554/eLife.08881 |
[48] |
Wang XY, Goodrich KJ, Conlon EG, Gao JC, Erbse AH, Manley JL, Cech TR. C9orf72 and triplet repeat disorder RNAs: G-quadruplex formation, binding to PRC2 and implications for disease mechanisms. RNA, 2019, 25(8):935-947.
doi: 10.1261/rna.071191.119 |
[49] |
Perutz MF, Johnson T, Suzuki M, Finch JT. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA, 1994, 91(12):5355-5358.
doi: 10.1073/pnas.91.12.5355 |
[50] |
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet, 2011, 13(1):36-46.
doi: 10.1038/nrg3117 pmid: 22124482 |
[51] |
Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet, 2010, 44:445-477.
doi: 10.1146/annurev-genet-072610-155046 pmid: 20809801 |
[52] |
Sznajder ŁJ, Swanson MS. Short tandem repeat expansions and RNA-mediated pathogenesis in myotonic dystrophy. Int J Mol Sci, 2019, 20(13):3365.
doi: 10.3390/ijms20133365 |
[53] |
Gellon L, Kaushal S, Cebrián J, Lahiri M, Mirkin SM, Freudenreich CH. Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function. Nucleic Acids Res, 2019, 47(2):794-805.
doi: 10.1093/nar/gky1195 |
[54] |
Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K, Mysore JS, Grote Urtubey DM, Parwez CR, von Hein SM, Clark HB, Nguyen HP, Förster E, Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and periphery in Huntingtonʼs disease and in spinocerebellar ataxia type 1. Hum Mol Genet, 2020, 29(15):2551-2567.
doi: 10.1093/hmg/ddaa139 |
[55] |
Pan XF, Xiao P, Li HQ, Zhao DX, Duan F. The Gratuitous repair on undamaged DNA misfold. In: DNA Repair. Kruman I, Ed. Tech Press, 2011, DOI: 10.5772/22441.
doi: 10.5772/22441 |
[56] |
Kunkel TA. Nucleotide repeats. Slippery DNA and diseases. Nature, 1993, 365(6443):207-208.
doi: 10.1038/365207a0 |
[57] |
Mosbach V, Poggi L, Richard GF. Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet, 2019, 65(1):17-28.
doi: 10.1007/s00294-018-0865-1 |
[58] |
Frank-Kamenetskii MD, Mirkin SM. TRIPLEX DNA STRUCTURES. Annu Rev Biochem, 1995, 64(1):65-95.
doi: 10.1146/annurev.bi.64.070195.000433 |
[59] |
Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol, 2000, 20(3):990-1000.
doi: 10.1128/MCB.20.3.990-1000.2000 pmid: 10629056 |
[60] |
Tian Y, Wang JL, Huang W, Zeng S, Jiao B, Liu Z, Chen Z, Li YJ, Wang Y, Min HX, Wang XJ, You Y, Zhang RX, Chen XY, Yi F, Zhou YF, Long HY, Zhou CJ, Hou X, Wang JP, Xie B, Liang F, Yang ZY, Sun QY, Allen EG, Shafik AM, Kong HE, Guo JF, Yan XX, Hu ZM, Xia K, Jiang H, Xu HW, Duan RH, Jin P, Tang BS, Shen L. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet, 2019, 105(1):166-176.
doi: S0002-9297(19)30200-9 pmid: 31178126 |
[61] |
Béna F, Gimelli S, Migliavacca E, Sharp AJ. Recurrent 14q32.2 microdeletion mediated by expanded TGG repeats. Hum Mol Genet, 2010, 19(10):1967-1973.
doi: 10.1093/hmg/ddq075 |
[62] |
Pan XF, Leach D. The roles of mutS, sbcCD and recA in the propagation of TGG repeat in Escherichia coli. Nucleic Acids Res, 2000, 28:3178-3184.
pmid: 10931934 |
[63] |
Gacy AM, Goellner G, Juranić N, Macura S, McMurray CT. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell, 1995, 81(4):533-540.
pmid: 7758107 |
[64] | Rajan-Babu IS, Chong SS. Triplet-repeat primed PCR and capillary electrophoresis for characterizing the fragile X mental retardation 1 CGG repeat hyperexpansions. Methods Mol Biol, 2019, 1972:199-210. |
[65] |
Murchie AI, Lilley DM. The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion. Nucleic Acids Res, 1987, 15(23):9641-9654.
pmid: 3697079 |
[66] |
Murmann AE, Yu JD, Opal P, Peter ME. Trinucleotide repeat expansion diseases, RNAi, and cancer. Trends Cancer, 2018, 4(10):684-700.
doi: S2405-8033(18)30191-2 pmid: 30292352 |
[67] |
Zeitler B, Froelich S, Marlen K, Shivak DA, Yu Q, Li D, Pearl JR, Miller JC, Zhang L, Paschon DE, Hinkley SJ, Ankoudinova I, Lam S, Guschin D, Kopan L, Cherone JM, Nguyen HOB, Qiao GJ, Ataei Y, Mendel MC, Amora R, Surosky R, Laganiere J, Vu BJ, Narayanan A, Sedaghat Y, Tillack K, Thiede C, Gärtner A, Kwak S, Bard J, Mrzljak L, Park L, Heikkinen T, Lehtimäki KK, Svedberg MM, Häggkvist J, Tari L, Tóth M, Varrone A, Halldin C, Kudwa AE, Ramboz S, Day M, Kondapalli J, Surmeier DJ, Urnov FD, Gregory PD, Rebar EJ, Muñoz-Sanjuán I, Zhang HS. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med, 2019, 25(7):1131-1142.
doi: 10.1038/s41591-019-0478-3 pmid: 31263285 |
[68] |
Raaijmakers RHL, Ripken L, Ausems CRM, Wansink DG. CRISPR/Cas applications in myotonic dystrophy: expanding opportunities. Int J Mol Sci, 2019, 20(15):3689.
doi: 10.3390/ijms20153689 |
[69] |
Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases. Front Neurosci, 2018, 12:75.
doi: 10.3389/fnins.2018.00075 |
[70] |
Dastidar S, Ardui S, Singh K, Majumdar D, Nair N, Fu YF, Reyon D, Samara E, Gerli MFM, Klein AF, De Schrijver W, Tipanee J, Seneca S, Tulalamba W, Wang H, Chai YC, In't Veld P, Furling D, Tedesco FS, Vermeesch JR, Joung JK, Chuah MK, VandenDriessche T. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res, 2018, 46(16):8275-8298.
doi: 10.1093/nar/gky548 |
[71] |
Mirkin SM, Smirnova EV. Positioned to expand. Nat Genet, 2002, 31(1):5-6.
doi: 10.1038/ng0502-5 |
[72] |
Pan XF. Mechanism of trinucleotide repeats instabilities: the necessities of repeat non-B secondary structure formation and the roles of cellular trans-acting factors. Acta Genet Sin, 2006, 33(1):1-11.
doi: 10.1016/S0379-4172(06)60001-2 |
[73] | Wen YL, Lv KN, Xun XK, Zhang X, Ding L, Pan XF. The role and mechanism of annealing helicase SMARCAL1 in maintaining genome stability. Hereditas(Beijing), 2019, 41(12):1084-1098. |
文雅蕾, 吕柯孬, 徐小康, 张欣, 丁良, 潘学峰. 退火解旋酶SMARCAL1在维持基因组稳定中的作用与机制. 遗传, 2019, 41(12):1084-1098. | |
[74] |
Pan XF, Ding YF, Shi LF. The roles of SbcCD and RNaseE in the transcription of GAA × TTC repeats in Escherichia coli. DNA Repair, 2009, 8(11):1321-1327.
doi: 10.1016/j.dnarep.2009.08.001 |
[75] |
Pan XF, Liao YH, Liu YM, Chang P, Liao LN, Yang L, Li HQ. Transcription of AAT•ATT triplet repeats in Escherichia coli is silenced by H-NS and IS1E transposition. PLoS One, 2010, 5(12):e14271.
doi: 10.1371/journal.pone.0014271 |
[76] | Wei JP, Pan XF, Li HQ, Duan F. Distribution and evolution of simple repeats in the mtDNA D-loop in mammalian. Hereditas(Beijing), 2011, 33(1):67-74. |
危金普, 潘学峰, 李红权, 段斐. 简单重复dna序列在哺乳动物mtdna d-loop区的分布及进化特征. 遗传, 2011, 33(1):67-74. | |
[77] |
Kozlowski P, de Mezer M, Krzyzosiak WJ. Trinucleotide repeats in human genome and exome. Nucleic Acids Res, 2010, 38(12):4027-4039.
doi: 10.1093/nar/gkq127 pmid: 20215431 |
[78] |
Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia QW, Bečanović K, Drögemöller BI, Semaka A, Nguyen CM, Trost B, Richards F, Bijlsma EK, Squitieri F, Ross CJD, Scherer SW, Eberle MA, Yuen RKC, Hayden MR. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am J Hum Genet, 2019, 104(6):1116-1126.
doi: S0002-9297(19)30153-3 pmid: 31104771 |
[79] |
Tojima M, Murakami G, Hikawa R, Yamakado H, Yamashita H, Takahashi R, Matsui M. Homozygous 31 trinucleotide repeats in the SCA2 allele are pathogenic for cerebellar ataxia. Neurol Genet, 2018, 4(6):e283.
doi: 10.1212/NXG.0000000000000283 |
[1] | 吴安平, 庆宏, 全贞贞. Rab蛋白家族在神经类疾病中的作用[J]. 遗传, 2021, 43(1): 16-29. |
[2] | 文雅蕾, 吕柯孬, 徐小康, 张欣, 丁良, 潘学峰. 退火解旋酶SMARCAL1在维持基因组稳定中的作用与机制[J]. 遗传, 2019, 41(12): 1084-1098. |
[3] | 潘学峰, 姜楠, 陈细芳, 周晓宏, 丁良, 段斐. R环的形成及对基因组稳定性的影响[J]. 遗传, 2014, 36(12): 1185-1194. |
[4] | 畅荣妮 袁广之 谭建强 赖青鸟 马军 杨益金 舒伟 侯伟 袁志刚. 广西一脊髓小脑共济失调3型家系SCA3/MJD基因突变和多态性的分析[J]. 遗传, 2013, 35(11): 1300-1306. |
[5] | 许静,王伟,柴宝峰,梁爱华. 八肋游仆虫一种富含三核苷酸重复序列的新基因GARP的克隆与序列分析[J]. 遗传, 2007, 29(1): 87-87―91. |
[6] | 牛银波,南亚萍,舒青,张科进,高晓彩,张富昌. 秦巴山区儿童FRAXE脆性位点CGG重复多态性分布及与智力的相关性分析[J]. 遗传, 2006, 28(10): 1219-1223. |
[7] | 莫亚勤,李麓芸,卢光琇. 亨廷顿病的基因诊断[J]. 遗传, 2005, 27(6): 861-864. |
[8] | 肖翠英,武辉,潘阿根,张思仲. 强直性肌营养不良症DMPK基因CTG重复序列与Alu±1kb单倍型研究[J]. 遗传, 2000, 22(2): 81-84. |
[9] | 敬慧娥,张思仲,肖翠英,武辉. 中国羌族人群强直性肌营养不良症基因CTG重复序列多态性研究[J]. 遗传, 1998, 20(4): 7-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: