遗传 ›› 2021, Vol. 43 ›› Issue (1): 16-29.doi: 10.16288/j.yczz.20-318
收稿日期:
2020-11-17
修回日期:
2021-01-06
出版日期:
2021-01-20
发布日期:
2021-01-12
通讯作者:
全贞贞
E-mail:qzzbit2015@bit.edu.cn
作者简介:
吴安平,在读硕士研究生,专业方向:生物工程。E-mail: 基金资助:
Anping Wu, Hong Qing, Zhenzhen Quan()
Received:
2020-11-17
Revised:
2021-01-06
Online:
2021-01-20
Published:
2021-01-12
Contact:
Quan Zhenzhen
E-mail:qzzbit2015@bit.edu.cn
Supported by:
摘要:
细胞内膜囊泡运输是一个复杂的通路网络,Rab GTPases是膜囊泡运输的主要调节剂,通常被认为是细胞内吞和分泌系统中各种细胞器和囊泡的特异性标记和识别物。与Rab蛋白相关的轴突运输、内体运输发生障碍是造成神经退行性疾病的重要原因之一。本文主要介绍了Rab蛋白在多种神经退行性疾病病理机制中的作用机理与调控机制,同时讨论了线粒体和胶质细胞功能异常与Rab蛋白之间的关联。深入探究Rab蛋白的作用机制对人类神经性疾病的早期诊断和治疗具有潜在的指导意义。
吴安平, 庆宏, 全贞贞. Rab蛋白家族在神经类疾病中的作用[J]. 遗传, 2021, 43(1): 16-29.
Anping Wu, Hong Qing, Zhenzhen Quan. The roles of Rab protein family in neurological diseases[J]. Hereditas(Beijing), 2021, 43(1): 16-29.
表1
神经退行性疾病中的Rab蛋白及其功能"
名称 | 功能 | 影响的神经退行性疾病 |
---|---|---|
Rab 1A | 调节从内质网(ER)到高尔基体室以及细胞表面的囊泡蛋白运输 | AD、PD |
Rab 3 | 参与胞吐作用,在神经递质释放和突触可塑性中起关键作用 | AD、PD |
Rab 5 | 介导货物从质膜到早期内含体的运输并充当早期内含体的标记物,在内含体运输中、突触和突触功能中起重要作用 | AD、ALS、HD |
Rab 7 | 调节货物从早期到晚期内含体的运输并充当晚期内含体的标记;控制神经营养蛋白受体的逆行轴突运输 | AD、PD 、ALS 、CMT2B |
Rab 8 | 是极化运输的重要调节剂,并参与反高尔基网络至基底外侧质的膜运输,突起形成和纤毛发生 | AD、PD 、HD |
Rab 10 | 调节小泡运输,参与反高尔基网络、内质网到基底膜的组织 | AD、PD |
Rab 11 | 与再循环内含体有关,控制着反高尔基网络与内吞在循环室或质膜之间的物质运输 | AD、PD 、ALS 、HD |
Rab 13 | 与生物合成和内含体再循环途径有关 | PD |
Rab 21 | 在内吞和自噬中发挥作用 | AD |
Rab 29 | 与溶酶体相关细胞器生物发生相关 | PD |
Rab 31 | 在表皮生长因子受体转运至晚期内含体的运输中发挥作用 | 与星形胶质细胞相关 |
Rab 35 | 控制货物从早期内含体、循环内含体直接返回质膜的快速回收 | PD、线粒体相关 |
[1] |
GBD 2016 Dementia Collaborators . Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.BD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol, 2019,18(1):88-106.
doi: 10.1016/S1474-4422(18)30403-4 pmid: 30497964 |
[2] |
Jia L, Quan M, Fu Y, Zhao T, Li Y, Wei C, Tang Y, Qin Q, Wang F, Qiao Y, Shi S, Wang YJ, Du Y, Zhang J, Zhang J, Luo B, Qu Q, Zhou C, Gauthier S, Jia J . Group for the Project of Dementia Situation in China Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol, 2020. 19(1):81-92.
doi: 10.1016/S1474-4422(19)30290-X pmid: 31494009 |
[3] |
Brennwald P, Novick P . Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4. Nature, 1993,362(6420):560-563.
doi: 10.1038/362560a0 pmid: 8464498 |
[4] |
Iakovenko A, Rostkova E, Merzlyak E, Hillebrand AM, Thomä NH, Goody RS, Alexandrov K . Semi-synthetic Rab proteins as tools for studying intermolecular interactions. Febs Lett, 2000,468(2):155-158.
doi: 10.1016/S0014-5793(00)01143-1 |
[5] |
Milburn MV, Tong L, deVos AM, Brünger A, Yamaizumi Z, Nishimura S, Kim SH,. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science, 1990,247(4945):939-945.
doi: 10.1126/science.2406906 pmid: 2406906 |
[6] |
Guadagno NA, Progida C . Rab GTPases: switching to human diseases. Cells, 2019,8(8):909.
doi: 10.3390/cells8080909 |
[7] |
Seabra MC, Wasmeier C . Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol, 2004,16(4):451-457.
doi: 10.1016/j.ceb.2004.06.014 |
[8] | Lin L, Shi AB . Endocytic recycling pathways and the regulatory mechanisms. Hereditas(Beijing), 2019,41(6):451-468. |
林珑, 史岸冰 . 细胞内吞循环运输通路及其分子调控机制. 遗传, 2019,41(6):451-468. | |
[9] |
Stoorvogel W, Strous GJ, Geuze HJ, Oorschot V, Schwartz AL . Late endosomes derive from early endosomes by maturation. Cell, 1991,65(3):417-427.
doi: 10.1016/0092-8674(91)90459-c pmid: 1850321 |
[10] |
Bucci C, Parton RG, Mather I H, Stunnenberg H, Simons K, Hoflack B, Zerial M . The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 1992,70(5):715-728.
doi: 10.1016/0092-8674(92)90306-w pmid: 1516130 |
[11] | Feng Y, Press B, Wandinger-Ness A. Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol, 1995,131(6 Pt 1):1435-1452. |
[12] |
Kouranti I, Sachse M, Arouche N, Goud B, Echard A . Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol, 2006,16(17):1719-1725.
doi: 10.1016/j.cub.2006.07.020 |
[13] |
Daro E, van der Sluijs P, Galli T, Mellman I . Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. P Natl Acad Sci Usa, 1996,93(18):9559-9564.
doi: 10.1073/pnas.93.18.9559 |
[14] |
Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol, 1996,135(4):913-924.
doi: 10.1083/jcb.135.4.913 pmid: 8922376 |
[15] |
Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LSB . Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron, 2003,40(1):25-40.
doi: 10.1016/s0896-6273(03)00594-4 pmid: 14527431 |
[16] |
Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LSB . Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science, 2005,307(5713):1282-1288.
doi: 10.1126/science.1105681 pmid: 15731448 |
[17] |
Dulubova I, Lou Xl, Lu J, Huryeva I, Alam A, Schneggenburger R, Südhof TC, Rizo J . A Munc13/ RIM/Rab3 tripartite complex: from priming to plasticity? Embo J, 2005,24(16):2839-2850.
doi: 10.1038/sj.emboj.7600753 pmid: 16052212 |
[18] |
Szodorai A, Kuan YH, Hunzelmann S, Engel U, Sakane A, Sasaki T, Takai Y, Kirsch J, Müller U, Beyreuther K, Brady S, Morfini G, Kins S . APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci, 2009,29(46):14534-14544.
doi: 10.1523/JNEUROSCI.1546-09.2009 pmid: 19923287 |
[19] |
Zhang K, Kenan RFB, Osakada Y, Xu W, Sinit RS, Chen L, Zhao XB, Chen JY, Cui BX, Wu CB . Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J Neurosci, 2013,33(17):7451-7462.
doi: 10.1523/JNEUROSCI.4322-12.2013 pmid: 23616551 |
[20] |
Deinhardt K, Salinas S, Verastegui C, Watson R, Worth D, Hanrahan S, Bucci C, Schiavo G . Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron, 2006,52(2):293-305.
doi: 10.1016/j.neuron.2006.08.018 pmid: 17046692 |
[21] |
Binotti B, Pavlos NJ, Riedel D, Wenzel D, Vorbrüggen G, Schalk AM, Kühnel K, Boyken J, Erck C, Martens H, Chua JJE, Jahn R . The GTPase Rab26 links synaptic vesicles to the autophagy pathway. eLife, 2015,4:e05597.
doi: 10.7554/eLife.05597 pmid: 25643395 |
[22] |
Flament S, Delacourte A, Verny M, Hauw JJ, Javoy- Agid F . Abnormal Tau proteins in progressive supranuclear palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol, 1991,81(6):591-596.
doi: 10.1007/BF00296367 pmid: 1831952 |
[23] |
Buggia-Prevot V, Fernandez CG, Riordan S, Vetrivel KS, Roseman J, Waters J, Bindokas VP, Vassar R, Thinakaran G . Axonal BACE1 dynamics and targeting in hippocampal neurons: A role for Rab11 GTPase. Mol Neurodegener, 2014,9:1.
doi: 10.1186/1750-1326-9-1 pmid: 24386896 |
[24] |
Udayar V, Buggia-Prévot V, Guerreiro RL, Siegel G, Rambabu N, Soohoo AL, Ponnusamy M, Siegenthaler B, Bali J, Simons M, Ries J, Puthenveedu MA, Hardy J, Thinakaran G, Rajendran L . A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of β-amyloid production. Cell Rep, 2013,5(6):1536-1551.
doi: 10.1016/j.celrep.2013.12.005 pmid: 24373285 |
[25] | Sun ZZ, Xie YJ, Chen YT, Yang QH, Quan ZZ, Dai RJ, Qing H . Rab21, a novel PS1 interactor, regulates γ-secretase activity via PS1 subcellular distribution. Mol Neurobiol, 2018,55(5):3841-3855. |
[26] |
Udayar V, Buggia-Prévot V, Guerreiro RL, Siegel G, Rambabu N, Soohoo AL, Ponnusamy M, Siegenthaler B, Bali J, Simons M, Ries J, Puthenveedu MA, Hardy J, Thinakaran G, Rajendran L. A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of β-amyloid production. Cell Rep, 2013,5(6):1536-1551.
doi: 10.1016/j.celrep.2013.12.005 pmid: 24373285 |
[27] |
Wang X. Pei G . Visualization of alzheimer’s disease related α-/β-/γ-secretase ternary complex by bimolecular fluorescence complementation based fluorescence resonance energy transfer. Front Mol Neurosci, 2018,11:431.
doi: 10.3389/fnmol.2018.00431 pmid: 30538620 |
[28] |
Huber LA, Pimplikar S, Parton RG, Virta H, Zerial M, Simons K . Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol, 1993,123(1):35-45.
doi: 10.1083/jcb.123.1.35 pmid: 8408203 |
[29] |
Nachury MV, Loktev AV, Zhang QH, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK . A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 2007,129(6):1201-1213.
doi: 10.1016/j.cell.2007.03.053 pmid: 17574030 |
[30] |
Shimohama S, Kamiya S, Taniguchi T, Sumida Y, Fujimoto S . Differential involvement of small G proteins in Alzheimer’s disease. Int J Mol Med, 1999,3(6):597-600.
doi: 10.3892/ijmm.3.6.597 pmid: 10341289 |
[31] |
Mohamed NV, Desjardins A, Leclerc N . Tau secretion is correlated to an increase of Golgi dynamics. PLoS One, 2017,12(5):e0178288.
doi: 10.1371/journal.pone.0178288 pmid: 28552936 |
[32] |
Shen R, Zhao XB, He L, Ding YB, Xu W, Lin SZ, Fang S, Yang WL, Sung KJ, Spencer B, Rissman RA, Lei M, Ding JQ, Wu CB . Upregulation of RIN3 induces endosomal dysfunction in Alzheimer's disease. Transl Neurodegener, 2020,9(1):26.
doi: 10.1186/s40035-020-00206-1 pmid: 32552912 |
[33] |
Brown TC, Tran IC, Backos DS, Esteban JA . NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron, 2005,45(1):81-94.
doi: 10.1016/j.neuron.2004.12.023 pmid: 15629704 |
[34] |
Deininger K, Eder M, Kramer ER, Zieglgänsberger W, Dodt HU, Dornmair K, Colicelli J, Klein R . The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. P Natl Acad Sci Usa, 2008,105(34):12539-12544.
doi: 10.1073/pnas.0801174105 |
[35] |
Hu XY, Crick SL, Bu GJ, Frieden C, Pappu RV, Lee JM . Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci USA, 2009,106(48):20324-20329.
doi: 10.1073/pnas.0911281106 pmid: 19910533 |
[36] |
Rodriguez L, Mohamed NV, Desjardins A, Lippé R, Fon EA, Leclerc N . Rab7A regulates tau secretion. J Neurochem, 2017,141(4):592-605.
doi: 10.1111/jnc.13994 pmid: 28222213 |
[37] |
Wissel BD, Dwivedi AK, Merola A, Chin D, Jacob C, Duker AP, Vaughan JE, Lovera L, LaFaver K, Levy A, Lang AE, Morgante F, Nirenberg MJ, Stephen C, Sharma N, Romagnolo A, Lopiano L, Balint B, Yu XX, Bhatia KP, Espay AJ. Functional neurological disorders in Parkinson disease. J Neurol Neurosurg Psychiatry, 2018,89(6):566-571.
doi: 10.1136/jnnp-2017-317378 pmid: 29549192 |
[38] |
Hur EM, Jang EH, Jeong GR, Lee BD . LRRK2 and membrane trafficking: nexus of Parkinson’s disease. BMB Rep, 2019,52(9):533-539.
pmid: 31383252 |
[39] |
Schapansky J, Khasnavis S, DeAndrade MP, Nardozzi JD, Falkson SR, Boyd JD, Sanderson JB, Bartels T, Melrose HL, LaVoie MJ. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiol Dis, 2018,111:26-35.
doi: 10.1016/j.nbd.2017.12.005 pmid: 29246723 |
[40] |
Fleming J, Outeiro TF, Slack M, Lindquist SL, Bulawa CE. detection of compounds that rescue Rab1-synuclein toxicity, Methods Enzymol, 2008,439:339-351.
doi: 10.1016/S0076-6879(07)00425-9 pmid: 18374176 |
[41] |
Gonçalves SA, Macedo D, Raquel H, Simões PD, Giorgini F, Ramalho JS, Barral DC, Moita LF, Outeiro TF . ShRNA-based screen identifies endocytic recycling pathway components that act as genetic modifiers of alpha-synuclein aggregation, secretion and toxicity. PLoS Genet, 2016,12(4):e1005995.
doi: 10.1371/journal.pgen.1005995 pmid: 27123591 |
[42] |
Dinter E, Saridaki T, Nippold M, Plum S, Diederichs L, Komnig D, Fensky L, May C, Marcus K, Voigt A, Schulz JB, Falkenburger BH . Rab7 induces clearance of α-synuclein aggregates. J Neurochem, 2016,138(5):758-774.
doi: 10.1111/jnc.13712 pmid: 27333324 |
[43] |
Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ . VPS35 mutations in Parkinson disease. Am J Hum Genet, 2011,89(1):162-167.
doi: 10.1016/j.ajhg.2011.06.001 |
[44] |
Liu ZY, Bryant N, Kumaran R, Beilina A, Abeliovich A, Cookson MR, West AB . LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum Mol Genet, 2018,27(2):385-395.
doi: 10.1093/hmg/ddx410 pmid: 29177506 |
[45] |
Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M . Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. eLife, 2016,5:e12813.
doi: 10.7554/eLife.12813 pmid: 26824392 |
[46] |
Steger M, Diez F, Dhekne HS, Lis P, Nirujogi RS, Karayel O, Tonelli F, Martinez TN, Lorentzen E, Pfeffer SR, Alessi DR, Mann M . Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. eLife, 2017,6:e31012.
doi: 10.7554/eLife.31012 pmid: 29125462 |
[47] |
Jeong GR, Jang EH, Bae JR, Jun S, Kang HC, Park CH, Shin JH, Yamamoto Y, Tanaka-Yamamoto K, Dawson VL, Dawson TM, Hur EM, Lee BD . Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. Mol Neurodegener, 2018,13:8.
doi: 10.1186/s13024-018-0240-1 pmid: 29439717 |
[48] |
Eguchi T, Kuwahara T, Sakurai M, Komori T, Fujimoto T, Ito G, Yoshimura SI, Harada A, Fukuda M, Koike M, Iwatsubo T . LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc Natl Acad Sci USA, 2018,115(39):E9115-E9124.
doi: 10.1073/pnas.1812196115 pmid: 30209220 |
[49] | Nakajo A, Yoshimura S, Togawa H, Kunii M, Iwano T, Izumi A, Noguchi Y, Watanabe A, Goto A, Sato T, Harada A . EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells. Journal of Cell Biology, 2016,212(3):297-306. |
[50] |
Wang P, Liu H, Wang Y, Liu O, Zhang J, Gleason A, Yang ZR, Wang H, Shi AB, Grant BD . RAB-10 promotes EHBP-1 bridging of filamentous actin and tubular recycling endosomes. PLoS Genet, 2016,12:e1006093.
doi: 10.1371/journal.pgen.1006093 pmid: 27272733 |
[51] |
Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, Lee C, Lee HeJ, Lee BD, Monte DAD, Masliah E, Lee SJ. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun, 2018,9(1):3465.
doi: 10.1038/s41467-018-05958-z pmid: 30150626 |
[52] | Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M . Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. Journal of Cell Biology, 189, 223- 232(2010), 2010. |
[53] |
Bae EJ, Lee SJ . The LRRK2-RAB axis in regulation of vesicle trafficking and α-synuclein propagation. Biochim Biophys Acta Mol Basis Dis, 2020,1866(3):165632.
doi: 10.1016/j.bbadis.2019.165632 pmid: 31812666 |
[54] |
Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A . A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int, 2015,6:171.
doi: 10.4103/2152-7806.169561 pmid: 26629397 |
[55] |
Soo KY, Halloran M, Sundaramoorthy V, Parakh S, Toth RP, Southam KA, McLean CA, Lock P, King A, Farg MA, Atkin JD. Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Acta Neuropathol, 2015,130(5):679-697.
doi: 10.1007/s00401-015-1468-2 pmid: 26298469 |
[56] |
Tsuda H, Han SM, Yang YF, Tong C, Lin YQ, Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, Miller MA, Bellen HJ . The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell, 2008,133(6):963-977.
doi: 10.1016/j.cell.2008.04.039 pmid: 18555774 |
[57] |
Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V, Halloran MA, Gleeson PA, Blair IP, Soo KY, King AE, Atkin JD . C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet, 2014,23(13):3579-3595.
doi: 10.1093/hmg/ddu068 |
[58] |
Topp JD, Gray NW, Gerard RD, Horazdovsky BF . Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J Biol Chem, 2004,279(23):24612-24623.
doi: 10.1074/jbc.M313504200 pmid: 15033976 |
[59] |
Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V, Halloran MA, Gleeson PA, Blair IP, Soo KY, King AE, Atkin JD . C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet, 2014,23(13):3579-3595.
doi: 10.1093/hmg/ddu068 |
[60] |
Deshpande M, Feiger Z, Shilton AK, Luo CC, Silverman E, Rodal AA . Role of BMP receptor traffic in synaptic growth defects in an ALS model. Mol Biol Cell, 2016,27(19):2898-2910.
doi: 10.1091/mbc.E16-07-0519 pmid: 27535427 |
[61] |
Djoussé L, Knowlton B, Hayden M, Almqvist EW, Brinkman R, Ross C, Margolis R, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJA, McCusker E, Gómez-Tortosa E, Mayo D, Jones R, Zanko A, Nance M, Abramson R, Suchowersky O, Paulsen J, Harrison M, Yang Q, Cupples LA, Gusella JF, MacDonald ME, Myers RH. Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet A, 2003,119A(3):279-282.
doi: 10.1002/ajmg.a.20190 pmid: 12784292 |
[62] |
Graham SF, Kumar PK, Bjorndahl T, Han B, Yilmaz A, Sherman E, Bahado-Singh RO, Wishart D, Mann D, Green BD . Metabolic signatures of Huntington's disease (HD): 1H NMR analysis of the polar metabolome in post-mortem human brain . Biochim Biophys Acta, 2016,1862(9):1675-1684.
doi: 10.1016/j.bbadis.2016.06.007 pmid: 27288730 |
[63] |
Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, Luzio JP, Kendrick-Jones J, Buss F . Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol, 2005,169(2):285-295.
doi: 10.1083/jcb.200501162 pmid: 15837803 |
[64] |
del Toro D, del Toro D, Alberch J, Lázaro-Diéguez F, Martín-Ibáñez R, Xifró X, Egea G, Canals JM . Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell, 2009,20(5):1478-1492.
doi: 10.1091/mbc.e08-07-0726 pmid: 19144827 |
[65] |
Pal A, Severin F, Lommer B, Shevchenko A, Zerial M . Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up- regulated in Huntington's disease. J Cell Biol, 2006,172(4):605-618.
doi: 10.1083/jcb.200509091 pmid: 16476778 |
[66] |
Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci, 2008,121(Pt 10):1649-1660.
doi: 10.1242/jcs.025726 pmid: 18430781 |
[67] |
Li XY, Standley C, Sapp E, Valencia A, Qin ZH, Kegel KB, Yoder J, Comer-Tierney LA, Esteves M, Chase K, Alexander J, Masso N, Sobin L, Bellve K, Tuft R, Lifshitz L, Fogarty K, Aronin N, DiFiglia M. Mutant huntingtin impairs vesicle formation from recycling endosomes by interfering with Rab11 activity. Mol Cell Biol, 2009,29(22):6106-6116.
doi: 10.1128/MCB.00420-09 pmid: 19752198 |
[68] |
Richards P, Didszun C, Campesan S, Simpson A, Horley B, Young KW, Glynn P, Cain K, Kyriacou CP, Giorgini F, Nicotera P . Dendritic spine loss and neurodegeneration is rescued by Rab11 in models of Huntington’s disease. Cell Death Differ, 2011,18(2):191-200.
doi: 10.1038/cdd.2010.127 |
[69] |
Her LS, Goldstein LSB . Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J Neurosci, 2008,28(50):13662-13672.
doi: 10.1523/JNEUROSCI.4144-08.2008 pmid: 19074039 |
[70] |
Richards P, Didszun C, Campesan S, Simpson A, Horley B, Young KW, Glynn P, Cain K, Kyriacou CP, Giorgini F, Nicotera P . Dendritic spine loss and neurodegeneration is rescued by Rab11 in models of Huntington's disease. Cell Death and Differentiation, 2011,18(2):191-200.
doi: 10.1038/cdd.2010.127 |
[71] |
De Luca A, Progida C, Spinosa MR, Alifano P, Bucci C . Characterization of the Rab7K157N mutant protein associated with Charcot-Marie-Tooth type 2B. Biochem Biophys Res Commun, 2008,372(2):283-287.
doi: 10.1016/j.bbrc.2008.05.060 pmid: 18501189 |
[72] |
Saxena S, Bucci C, Weis J, Kruttgen A . The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci, 2005,25(47):10930-10940.
doi: 10.1523/JNEUROSCI.2029-05.2005 pmid: 16306406 |
[73] |
Bronfman FC, Escudero CA, Weis J, Kruttgen A. Endosomal transport of neurotrophins: roles in signaling and neurodegenerative diseases. Dev Neurobiol, 2007,67(9):1183-1203.
doi: 10.1002/dneu.20513 pmid: 17514710 |
[74] |
Moises T, Dreier A, Flohr S, Esser M, Brauers E, Reiss K, Merken D, Weis J, Krüttgen A . Tracking TrkA’s trafficking: NGF receptor trafficking controls NGF receptor signaling. Mol Neurobiol, 2007,35(2):151-159.
doi: 10.1007/s12035-007-8000-1 |
[75] |
Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C . Rab7b controls trafficking from endosomes to the TGN. J Cell Sci, 2010. 123(9):1480.
doi: 10.1242/jcs.051474 |
[76] |
Progida C, Malerød L, Stuffers S, Brech A, Bucci C, Stenmark H . RILP is required for the proper morphology and function of late endosomes. J Cell Sci, 2007,120(21):3729-3737.
doi: 10.1242/jcs.017301 |
[77] |
Ye X, Sun XQ, Starovoytov V, Cai Q . Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Hum Mol Genet, 2015,24(10):2938-2951.
doi: 10.1093/hmg/ddv056 pmid: 25678552 |
[78] |
Moore AS, Holzbaur ELF . Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci USA, 2016,113(24):E3349-E3358.
doi: 10.1073/pnas.1523810113 pmid: 27247382 |
[79] |
Yamano K, Fogel AI, Wang CX, van der Bliek AM, Youle RJ. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife, 2014,3:e01612.
doi: 10.7554/eLife.01612 pmid: 24569479 |
[80] |
Yamano K, Wang CX, Sarraf SA, Münch C, Kikuchi R, Noda NN, Hizukuri Y, Kanemaki MT, Harper W, Tanaka K, Matsuda N, Youle RJ . Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife, 2018,7:e31326.
doi: 10.7554/eLife.31326 pmid: 29360040 |
[81] |
Alto NM, Soderling J, Scott JD . Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol, 2002,158(4):659-668.
doi: 10.1083/jcb.200204081 pmid: 12186851 |
[82] |
Minowa-Nozawa A, Nozawa T, Okamoto-Furuta K, Kohda H, Nakagawa I . Rab35 GTPase recruits NDP52 to autophagy targets. The EMBO Journal, 2017,36(18):2790-2807.
doi: 10.15252/embj.201796463 pmid: 28848034 |
[83] |
Minkiewicz J, de Rivero Vaccari JP, Keane RW . Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013,61(7):1113-1121.
doi: 10.1002/glia.22499 |
[84] |
Koenigsknecht J, Landreth G . Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin- dependent mechanism. J Neurosci, 2004,24(44):9838-9846.
doi: 10.1523/JNEUROSCI.2557-04.2004 pmid: 15525768 |
[85] | Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li SM, Ramakrishnan S, Merry KM, Shi QQ, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B . Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science (New York, N.Y.), 2016,352(6286):712-716. |
[86] |
Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, Kahn SA, Romão LF, de Miranda J, Alves-Leon SV, de Souza JM, Castro NG, Panizzutti R, Gomes FC. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem, 2012,287(49):41432-41445.
doi: 10.1074/jbc.M112.380824 pmid: 23055518 |
[87] |
Drukarch B, Schepens E, Stoof JC, Langeveld CH, Van Muiswinkel FL . Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free Radic Biol Med, 1998,25(2):217-220.
doi: 10.1016/s0891-5849(98)00050-1 pmid: 9667499 |
[88] |
Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature, 2004,431(7005):195-199.
doi: 10.1038/nature02827 pmid: 15356633 |
[89] |
Liddelow SA, Barres BA . Reactive astrocytes: production, function, and therapeutic potential. Immunity, 2017,46(6):957-967.
doi: 10.1016/j.immuni.2017.06.006 pmid: 28636962 |
[90] |
Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA . Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA, 2018,115(8):E1896-E1905.
doi: 10.1073/pnas.1800165115 pmid: 29437957 |
[91] |
Yun SP, Kam T, Panicker N, Kim S, Oh Y, Park J, Kwon S, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao XB, Lee JH, Kumar M, An D, Kang S, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S, Dawson TM, Ko HS . Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med, 2018,24(7):931-938.
doi: 10.1038/s41591-018-0051-5 pmid: 29892066 |
[92] |
Koistinaho M, Lin SZ, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM . Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med, 2004,10(7):719-726.
doi: 10.1038/nm1058 pmid: 15195085 |
[93] |
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng ZY, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH. APOE4 causes widespread molecular and cellular alterations associated with alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron, 2018, 98(6): 1141-1154. e7.
doi: 10.1016/j.neuron.2018.05.008 pmid: 29861287 |
[94] |
Holler CJ, Webb RL, Laux AL, Beckett TL, Niedowicz DM, Ahmed RR, Liu YX, Simmons CR, Dowling ALS, Spinelli A, Khurgel M, Estus S, Head E, Hersh LB, Murphy MP . BACE2 expression increases in human neurodegenerative disease. Am J Pathol, 2012,180(1):337-350.
doi: 10.1016/j.ajpath.2011.09.034 pmid: 22074738 |
[95] |
Lindström V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, Ingelsson M, Bergström J, Erlandsson A . Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci, 2017,82:143-156.
doi: 10.1016/j.mcn.2017.04.009 pmid: 28450268 |
[96] |
Braidy N, Gai WP, Xu YH, Sachdev P, Guillemin GJ, Jiang XM, Ballard JWO, Horan MP, Fang ZM, Chong BH, Chan DKY . Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl Neurodegener, 2013,2(1):20.
doi: 10.1186/2047-9158-2-20 pmid: 24093918 |
[97] |
Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ . Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem, 2010,285(12):9262-9272.
doi: 10.1074/jbc.M109.081125 pmid: 20071342 |
[98] |
Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M . Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci, 2014,34(49):16180-16193.
doi: 10.1523/JNEUROSCI.3020-14.2014 pmid: 25471560 |
[99] |
Singhrao SK, Thomas P, Wood JD, MacMillan JC, Neal JW, Harper PS, Jones AL. Huntingtin protein colocalizes with lesions of neurodegenerative diseases: An investigation in Huntington's, Alzheimer's, and Pick's diseases. Exp Neurol, 1998,150(2):213-222.
doi: 10.1006/exnr.1998.6778 pmid: 9527890 |
[100] |
Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ . Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol, 2005,171(6):1001-1012.
doi: 10.1083/jcb.200508072 pmid: 16365166 |
[101] |
Ng EL, Ng JJ, Liang F, Tang BL . Rab22B is expressed in the CNS astroglia lineage and plays a role in epidermal growth factor receptor trafficking in A431 cells. J Cell Physiol, 2009,221(3):716-728.
doi: 10.1002/jcp.21911 pmid: 19725050 |
[102] |
Chua CEL, Goh ELK, Tang BL . Rab31 is expressed in neural progenitor cells and plays a role in their differentiation. FEBS Lett, 2014,588(17):3186-3194.
doi: 10.1016/j.febslet.2014.06.060 |
[103] | Díaz J, Quest A, Leyton L . Increased expression of αvβ3 integrin in reactive astrocytes is controlled by the Rab endocytic pathway. Eur Neuropsychopharm, 2019,29:S462-S463. |
[1] | 宋睿嘉, 韩露, 孙海峰, 沈彬. 线粒体DNA碱基编辑技术研究进展[J]. 遗传, 2023, 45(8): 632-642. |
[2] | 张茜, 王子豪, 田烨. 跨组织线粒体应激信号交流调控机体衰老研究进展[J]. 遗传, 2023, 45(3): 187-197. |
[3] | 张爽, 郭珊珊, 王汝雯, 马仁燕, 吴显敏, 陈佩杰, 王茹. PARK基因家族在骨骼肌肌病中的研究进展[J]. 遗传, 2022, 44(7): 545-555. |
[4] | 吕柯孬, 潘学峰. 人类神经退行性疾病相关的三核苷酸重复DNA序列不稳定性机制研究进展[J]. 遗传, 2021, 43(9): 835-848. |
[5] | 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[6] | 高志伟, 王龙. 真核生物起源研究进展[J]. 遗传, 2020, 42(10): 929-948. |
[7] | 谌阳, 王文君, 付明, 徐国强, 周翔, 刘榜. 基于核质遗传原理建立多重PCR检测方法鉴定阿胶中马、驴源性成分及皮张种源[J]. 遗传, 2020, 42(10): 1028-1035. |
[8] | 刘传明,丁利军,李佳音,戴建武,孙海翔. 衰老导致卵巢功能低下研究进展[J]. 遗传, 2019, 41(9): 816-826. |
[9] | 林珑, 史岸冰. 细胞内吞循环运输通路及其分子调控机制[J]. 遗传, 2019, 41(6): 451-468. |
[10] | 匡卫民, 于黎. 基因组时代线粒体基因组拼装策略及软件应用现状[J]. 遗传, 2019, 41(11): 979-993. |
[11] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[12] | 孙吉吉, 赵晓旭, 乔丽华, 梅霜, 聂志鹏, 张青海, 冀延春, 蒋萍萍, 管敏鑫. 线粒体遗传疾病细胞模型的构建:永生淋巴细胞系和转线粒体细胞系[J]. 遗传, 2016, 38(7): 666-673. |
[13] | 贾振伟. 线粒体与多潜能干细胞功能[J]. 遗传, 2016, 38(7): 603-611. |
[14] | 李雪娟, 黄原, 雷富民. 山鹧鸪属鸟类线粒体基因组的比较及系统发育研究[J]. 遗传, 2014, 36(9): 912-920. |
[15] | 孟祥娟, 朱金萍, 高敏, 张赛, 赵福新, 张娟娟, 刘晓玲, 韦企平, 童绎, 张铭连, 瞿佳, 管敏鑫. 中国人群携带m.14484T>C突变的Leber’s遗传性视神经病变线粒体单体型及多态位点分析[J]. 遗传, 2014, 36(4): 336-345. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: