遗传 ›› 2022, Vol. 44 ›› Issue (4): 269-274.doi: 10.16288/j.yczz.22-034
收稿日期:
2022-02-14
修回日期:
2022-03-18
出版日期:
2022-04-20
发布日期:
2022-03-28
通讯作者:
李磊
E-mail:wangzichuan@ioz.ac.cn;lil@ioz.ac.cn
作者简介:
王梓川,在读硕士研究生,专业方向:人体解剖与组织胚胎学。E-mail: 基金资助:
Zichuan Wang1,2(), Jiaqi Zhang1,2, Lei Li1,2()
Received:
2022-02-14
Revised:
2022-03-18
Online:
2022-04-20
Published:
2022-03-28
Contact:
Li Lei
E-mail:wangzichuan@ioz.ac.cn;lil@ioz.ac.cn
Supported by:
摘要:
哺乳动物胚胎发育起始于受精卵,受精卵依次形成桑椹胚和囊胚。同时,早期胚胎从输卵管迁入子宫,植入母体子宫后通过原肠运动形成原肠胚并进一步发育为新生个体。哺乳动物体内生命孕育方式造成研究取材和观察等方面的困难,阻碍了人类对哺乳动物胚胎发育过程的认识。因此,必需开发哺乳动物体外胚胎技术,以克服体内发育方式所带来的研究困难。2021年12月,Sicence杂志公布了2021年十大科学突破,“体外胚胎为人类早期发育研究开辟新的方向”位列其中。本文对哺乳动物体外胚胎的研究历史和最新进展进行评述,同时探讨这些新技术在相关领域研究中的应用,以期为人类早期胚胎发育和相关疾病研究带来启示。
王梓川, 张嘉祺, 李磊. 哺乳动物早期胚胎发育的体外研究[J]. 遗传, 2022, 44(4): 269-274.
Zichuan Wang, Jiaqi Zhang, Lei Li. In vitro investigation of mammalian early embryonic development[J]. Hereditas(Beijing), 2022, 44(4): 269-274.
[1] |
Li L, Zheng P, Dean J. Maternal control of early mouse development. Development, 2010, 137(6):859-870.
doi: 10.1242/dev.039487 |
[2] |
Li L, Lu XK, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med, 2013, 34(5):919-938.
doi: 10.1016/j.mam.2013.01.003 |
[3] |
Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L, Turlier H, Maître JL. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science, 2019, 365(6452):465-468.
doi: 10.1126/science.aaw7709 pmid: 31371608 |
[4] |
Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G, Zhu M, Jedrusik A, Devito LG, Noli L, Macaulay IC, Buecker C, Khalaf Y, Ilic D, Voet T, Marioni JC, Zernicka-Goetz M. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature, 2017, 552(7684):239-243.
doi: 10.1038/nature24675 |
[5] |
Bedzhov I, Zernicka-Goetz M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell, 2014, 156(5):1032-1044.
doi: 10.1016/j.cell.2014.01.023 pmid: 24529478 |
[6] |
Christodoulou N, Kyprianou C, Weberling A, Wang R, Cui GZ, Peng GD, Jing NH, Zernicka-Goetz M. Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation. Nat Cell Bio, 2018, 20(11):1278-1289.
doi: 10.1038/s41556-018-0211-3 |
[7] |
Pijuan-Sala B, Griffiths J A, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, Mulas C, Ibarra-Soria X, Tyser RCV, Ho DLL, Reik W, Srinivas S, Simons BD, Nichols J, Marioni JC, Göttgens B. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature, 2019, 566(7745):490-495.
doi: 10.1038/s41586-019-0933-9 |
[8] |
Peng GD, Suo SB, Cui GZ, Yu F, Wang R, Chen J, Chen SR, Liu ZW, Chen GY, Qian Y, Tam PPL, Han JDJ, Jing NH. Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature, 2019, 572(7770):528-532.
doi: 10.1038/s41586-019-1469-8 |
[9] |
Tam PPL, Loebel DAF. Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet, 2007, 8(5):368-381.
doi: 10.1038/nrg2084 |
[10] |
Chen LT, Hsu YC. Development of mouse embryos in vitro: preimplantation to the limb bud stage. Science, 1982, 218(4567):66-68.
pmid: 7123220 |
[11] |
Hsu YC. Differentiation in vitro of mouse embryos to the stage of early somite. Dev Biol, 1973, 33(2):403-411.
pmid: 4799499 |
[12] |
Jenkinson EJ, Wilson IB. In vitro support system for the study of blastocyst differentiation in the mouse. Nature, 1970, 228(5273):776-778.
doi: 10.1038/228776a0 |
[13] |
New DA, Coppola PT, Terry S. Culture of explanted rat embryos in rotating tubes. J Reprod Fertil, 1973, 35(1):135-138.
pmid: 4742154 |
[14] |
New D A. Development of explanted rat embryos in circulating medium. J Embryol Exp Morphol, 1967, 17(3):513-525.
pmid: 4860575 |
[15] |
Morris SA, Grewal S, Barrios F, Patankar SN, Strauss B, Buttery L, Alexander M, Shakesheff KM, Zernicka-Goetz M. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat Commun, 2012, 3(1):673.
doi: 10.1038/ncomms1671 |
[16] |
Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NNM, Campbell A, Devito L, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol, 2016, 18(6):700-708.
doi: 10.1038/ncb3347 pmid: 27144686 |
[17] |
Zhou F, Wang R, Yuan P, Ren YX, Mao YN, Li R, Lian Y, Li JS, Wen L, Yan LY, Qiao J, Tang FC. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature, 2019, 572(7771):660-664.
doi: 10.1038/s41586-019-1500-0 |
[18] |
Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. Self-organization of the in vitro attached human embryo. Nature, 2016, 533(7602):251-254.
doi: 10.1038/nature17948 |
[19] |
Xiang LF, Yin Y, Zheng Y, Ma YP, Li YG, Zhao ZG, Guo JQ, Ai ZY, Niu YY, Duan K, He JJ, Ren SC, Wu D, Bai Y, Shang ZC, Dai X, Ji WZ, Li TQ. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature, 2020, 577(7791):537-542.
doi: 10.1038/s41586-019-1875-y |
[20] |
Niu Y, Sun N, Li C, Lei Y, Huang ZH, Wu J, Si CY, Dai X, Liu CY, Wei JK, Liu LQ, Feng S, Kang Y, Si W, Wang H, Zhang E, Zhao L, Li ZW, Luo X, Cui GZ, Peng GD, Belmonte JCI, Ji WZ, Tan T. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366(6467): eaaw5754.
doi: 10.1126/science.aaw5754 |
[21] | Ma HX, Zhai JL, Wan HF, Jiang XX, Wang XX, Wang L, Xiang YL, He XC, Zhao ZA, Zhao B, Zheng P, Li L, Wang HM. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science, 2019, 366(6467): eaax7890. |
[22] |
Aguilera-Castrejon A, Oldak B, Shani T, Ghanem N, Itzkovich C, Slomovich S, Tarazi S, Bayerl J, Chugaeva V, Ayyash M, Ashouokhi S, Sheban D, Livnat N, Lasman L, Viukov S, Zerbib M, Addadi Y, Rais Y, Cheng SF, Stelzer Y, Keren-Shaul H, Shlomo R, Massarwa R, Novershtern N, Maza I, Hanna JH. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature, 2021, 593(7857):119-124.
doi: 10.1038/s41586-021-03416-3 |
[23] |
Wu J, Okamura D, Li M, Suzuki K, Luo CY, Ma L, He YP, Li ZW, Benner C, Tamura I, Krause MN, Nery JR, Du TT, Zhang ZZ, Hishida T, Takahashi Y, Aizawa E, Kim NY, Lajara J, Guillen P, Campistol JM, Esteban CR, Ross PJ, Saghatelian A, Ren B, Ecker JR, Izpisua Belmonte JC. An alternative pluripotent state confers interspecies chimaeric competency. Nature, 2015, 521(7552):316-321.
doi: 10.1038/nature14413 |
[24] |
Kojima Y, Kaufman-Francis K, Studdert JB, Steiner KA, Power MD, Loebel DA, Jones V, Hor A, de Alencastro G, Logan GJ, Teber ET, Tam OH, Stutz MD, Alexander IE, Pickett HA, Tam PP. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell, 2014, 14(1):107-120.
doi: 10.1016/j.stem.2013.09.014 pmid: 24139757 |
[25] |
Huang Y, Osorno R, Tsakiridis A, Wilson V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep, 2012, 2(6):1571-1578.
doi: 10.1016/j.celrep.2012.10.022 pmid: 23200857 |
[26] |
Ma H, Wang H, Zheng P, Li L. Comments on ‘in vitro culture of cynomolgus monkey embryos beyond early gastrulation’. J Mol Cell Biol, 2020, 12(5):400-402.
doi: 10.1093/jmcb/mjz108 |
[27] |
Clark AT, Brivanlou A, Fu JP, Kato K, Mathews D, Niakan KK, Rivron N, Saitou M, Surani A, Tang FH, Rossant J. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: considerations leading to the revised ISSCR guidelines. Stem Cell Reports, 2021, 16(6):1416-1424.
doi: 10.1016/j.stemcr.2021.05.008 |
[28] |
Kinoshita M, Barber M, Mansfield W, Cui YZ, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell, 2021, 28(3):453-471.
doi: 10.1016/j.stem.2020.11.005 |
[29] |
Yu LQ, Wei YL, Sun HX, Mahdi AK, Arteaga CAP, Sakurai M, Schmitz DA, Zheng CB, Ballard ED, Li J, Tanaka N, Kohara A, Okamura D, Mutto AA, Gu Y, Ross PJ, Wu J. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell, 2021, 28(3):550-567.
doi: 10.1016/j.stem.2020.11.003 |
[30] |
Wang XX, Xiang YL, Yu Y, Wang R, Zhang Y, Xu QH, Sun H, Zhao ZA, Jiang XX, Wang XQ, Lu XK, Qin DD, Quan YJ, Zhang JQ, Shyh-Chang N, Wang HM, Jing NH, Xie W, Li L. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Res, 2021, 31(5):526-541.
doi: 10.1038/s41422-021-00477-x |
[31] |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391):1145-1147.
doi: 10.1126/science.282.5391.1145 pmid: 9804556 |
[32] |
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819):154-156.
doi: 10.1038/292154a0 |
[33] |
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78(12):7634-7638.
doi: 10.1073/pnas.78.12.7634 |
[34] | Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science, 2017, 356(6334). |
[35] |
Sozen B, Amadei G, Cox A, Wang R, Na E, Czukiewska S, Chappell L, Chappell L, Voet T, Michel G, Jing NH, Glover DM, Zernicka-Goetz M. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol, 2018, 20(8):979-989.
doi: 10.1038/s41556-018-0147-7 |
[36] |
Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J, Vivié J, Truckenmüller RK, van Oudenaarden A, van Blitterswijk CA, Geijsen N. Blastocyst-like structures generated solely from stem cells. Nature, 2018, 557(7703):106-111.
doi: 10.1038/s41586-018-0051-0 |
[37] | Zhang SP, Chen TZ, Chen NX, Gao DF, Shi BB, Kong SB, West RC, Yuan Y, Zhi ML, Wei QQ, Xiang JZ, Mu HY, Yue L, Lei XH, Wang XP, Zhong L, Liang H, Cao SY, Belmonte JCI, Wang HB, Han JY. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells. Nat Commun, 2019, 10(1). |
[38] |
Li RH, Zhong CQ, Yu Y, Liu HS, Sakurai M, Yu LQ, Min ZY, Shi L, Wei YL, Takahashi Y, Liao HK, Qiao J, Deng HK, Nuñez-Delicado E, Rodriguez Esteban C, Wu J, Izpisua Belmonte JC. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell, 2019, 179(3):687-702.
doi: 10.1016/j.cell.2019.09.029 |
[39] |
Yu LQ, Wei YL, Duan J, Schmitz DA, Sakurai M, Wang L, Wang KH, Zhao SH, Hon GC, Wu J. Blastocyst-like structures generated from human pluripotent stem cells. Nature, 2021, 591(7851):620-626.
doi: 10.1038/s41586-021-03356-y |
[40] |
Liu XD, Tan JP, Schröder J, Aberkane A, Ouyang JF, Mohenska M, Lim SM, Sun YBY, Chen J, Sun GZ, Zhou YC, Poppe D, Lister R, Clark AT, Rackham OJL, Zenker J, Polo JM. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature, 2021, 591(7851):627-632.
doi: 10.1038/s41586-021-03372-y |
[41] |
Fan Y, Min ZY, Alsolami S, Ma ZL, Zhang E, Chen W, Zhong K, Pei WD, Kang XJ, Zhang PY, Wang YL, Zhang YY, Zhan LF, Zhu HY, An CR, Li R, Qiao J, Tan T, Li M, Yu Y. Generation of human blastocyst-like structures from pluripotent stem cells. Cell Discov, 2021, 7(1):81.
doi: 10.1038/s41421-021-00316-8 |
[42] |
Yanagida A, Spindlow D, Nichols J, Nichols J, Dattani A, Smith A, Guo G. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell, 2021, 28(6):1016-1022.
doi: 10.1016/j.stem.2021.04.031 pmid: 33957081 |
[43] |
Sozen B, Jorgensen V, Weatherbee BAT, Chen SS, Zhu M, Zernicka-Goetz M. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat Commun, 2021, 12(1):5550.
doi: 10.1038/s41467-021-25853-4 |
[1] | 王文龙, 张春霞. 哺乳动物卵子与早期胚胎中全转录组poly(A)尾研究进展[J]. 遗传, 2023, 45(4): 273-278. |
[2] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[3] | 赵春丽,焦丽红,李雪梅,陈新,郝艳红,王柳. 小鼠母源因子对早期胚胎发育的影响[J]. 遗传, 2006, 28(5): 601-605. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: