[1] |
Liu JJ, Lu XB, Zhang SY, Yuan L, Sun YD. Molecular insights into mRNA polyadenylation and deadenylation. Int J Mol Sci, 2022, 23(19): 10985.
doi: 10.3390/ijms231910985
|
[2] |
Rodríguez-Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio, 2022, doi: 10.1002/2211-5463.13528.
doi: 10.1002/2211-5463.13528
|
[3] |
Gallie DR. The cap and poly(a) tail function synergistically to regulate mRNA translational efficiency. Genes Dev, 1991, 5(11): 2108-2116.
doi: 10.1101/gad.5.11.2108
|
[4] |
Yi H, Park J, Ha MJ, Lim J, Chang H, Kim VN. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol Cell, 2018, 70(6): 1081-1088.e5.
doi: S1097-2765(18)30359-9
pmid: 29932901
|
[5] |
Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5′→3′ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta, 2013, 1829(6-7): 590-603.
doi: 10.1016/j.bbagrm.2013.03.005
pmid: 23517755
|
[6] |
Jia JB, Long YP, Zhang H, Li ZW, Liu ZJ, Zhao Y, Lu DD, Jin XH, Deng X, Xia R, Cao XF, Zhai JX. Post- transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat Plants, 2020, 6(7): 780-788.
doi: 10.1038/s41477-020-0688-1
|
[7] |
Long YP, Jia JB, Mo WP, Jin XH, Zhai JX. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing. Nat Protoc, 2021, 16(9): 4355-4381.
doi: 10.1038/s41596-021-00581-7
|
[8] |
Legnini I, Alles J, Karaiskos N, Ayoub S, Rajewsky N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods, 2019, 16(9): 879-886.
doi: 10.1038/s41592-019-0503-y
pmid: 31384046
|
[9] |
Liu YS, Zhao H, Shao FH, Zhang YW, Nie H, Zhang JY, Li C, Hou ZZ, Chen ZJ, Wang JQ, Zhou B, Wu KL, Lu FL. Remodeling of maternal mRNA through poly(A) tail orchestrates human oocyte-to-embryo transition. Nat Struct Mol Biol, 2023, 30(2): 200-215.
doi: 10.1038/s41594-022-00908-2
|
[10] |
Murray EL, Schoenberg DR. Assays for determining poly(A) tail length and the polarity of mRNA decay in mammalian cells. Methods Enzymol, 2008, 448: 483-504.
|
[11] |
Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P, de Moor CH. A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res, 2007, 35(19): e132.
doi: 10.1093/nar/gkm830
pmid: 17933768
|
[12] |
Chang H, Lim J, Ha MJ, Kim VN. TAIL-seq: genome- wide determination of poly(A) tail length and 3′ end modifications. Mol Cell, 2014, 53(6): 1044-1052.
doi: 10.1016/j.molcel.2014.02.007
|
[13] |
Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature, 2014, 508(7494): 66-71.
doi: 10.1038/nature13007
|
[14] |
Lim J, Lee M, Son A, Chang H, Kim VN. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to- embryo development. Genes Dev, 2016, 30(14): 1671-1682.
doi: 10.1101/gad.284802.116
|
[15] |
Legnini I, Alles J, Karaiskos N, Ayoub S, Rajewsky N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods, 2019, 16(9): 879-886.
doi: 10.1038/s41592-019-0503-y
pmid: 31384046
|
[16] |
Liu YS, Nie H, Liu HX, Lu FL. Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat Commun, 2019, 10(1): 5292.
doi: 10.1038/s41467-019-13228-9
pmid: 31757970
|
[17] |
Liu YS, Zhang YW, Wang JQ, Lu FL. Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAIso-seq. Nat Protoc, 2022, 17(9): 1980-2007.
doi: 10.1038/s41596-022-00704-8
pmid: 35831615
|
[18] |
Liu YS, Nie H, Zhang YW, Lu FL, Wang JQ.Comprehensive analysis of mRNA poly(A) tails by PAIso-seq2. Sci China Life Sci, 2023, 66(1): 187-190.
doi: 10.1007/s11427-022-2186-8
|
[19] |
Schultz RM, Stein P, Svoboda P. The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod, 2018, 99(1): 160-174.
doi: 10.1093/biolre/ioy013
pmid: 29462259
|
[20] |
Du ZH, Zhang K, Xie W. Epigenetic reprogramming in early animal development. Cold Spring Harb Perspect Biol, 2022, 14(6): a039677.
doi: 10.1101/cshperspect.a039677
|
[21] |
Robertson S, Lin RL. The Oocyte-to-Embryo Transition. Adv Exp Med Biol, 2013, 757: 351-372.
doi: 10.1007/978-1-4614-4015-4_12
pmid: 22872483
|
[22] |
Svoboda P, Franke V, Schultz RM. Sculpting the transcriptome during the oocyte-to-embryo transition in mouse. Curr Top Dev Biol, 2015, 113: 305-349.
doi: 10.1016/bs.ctdb.2015.06.004
pmid: 26358877
|
[23] |
Clegg KB, Pikó L. Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryos. Dev Biol, 1983, 95(2): 331-341.
pmid: 6186546
|
[24] |
Pikó L, Clegg KB. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev Biol, 1982, 89(2): 362-378.
doi: 10.1016/0012-1606(82)90325-6
pmid: 6173273
|
[25] |
Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell, 2017, 42(4): 316-332.
doi: S1534-5807(17)30602-0
pmid: 28829942
|
[26] |
Weill L, Belloc E, Bava FA, Méndez R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol, 2012, 19(6): 577-585.
doi: 10.1038/nsmb.2311
pmid: 22664985
|
[27] |
Eckmann CR, Rammelt C, Wahle E. Control of poly(A) tail length. Wiley Interdiscip Rev RNA, 2011, 2(3): 348-361.
doi: 10.1002/wrna.56
|
[28] |
Liu YS, Nie H, Zhang CX, Hou ZZ, Wang JQ, Lu FL. Poly(A) tail length is a major regulator of maternal gene expression during the mammalian oocyte-to-embryo transition. bioRxiv, 2021, 458052.
|
[29] |
Eichhorn SW, Subtelny AO, Kronja I, Kwasnieski JC, Orr-Weaver TL, Bartel DP. mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos. eLife, 2016, 5: e16955.
doi: 10.7554/eLife.16955
|
[30] |
Walser CB, Lipshitz HD. Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev, 2011, 21(4): 431-443.
doi: 10.1016/j.gde.2011.03.003
pmid: 21497081
|
[31] |
Yu C, Ji SY, Sha QQ, Dang YJ, Zhou JJ, Zhang YL, Liu Y, Wang ZW, Hu BQ, Sun QY, Sun SC, Tang FC, Fan HY. BTG 4 is a meiotic cell cycle-coupled maternal-zygotic- transition licensing factor in oocytes. Nat Struct Mol Biol, 2016, 23(5): 387-394.
|
[32] |
Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J, 2018, 37(24): e99333.
|
[33] |
Liu YS, Lu XK, Shi JC, Yu XJ, Zhang XX, Zhu K, Yi ZH, Duan EK, Li L. BTG 4 is a key regulator for maternal mRNA clearance during mouse early embryogenesis. J Mol Cell Biol, 2016, 8(4): 366-368.
doi: 10.1093/jmcb/mjw023
|
[34] |
Lim J, Kim D, Lee YS, Ha MJ, Lee M, Yeo J, Chang H, Song J, Ahn K, Kim VN. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science, 2018, 361(6403): 701-704.
doi: 10.1126/science.aam5794
pmid: 30026317
|
[35] |
Lim J, Ha MJ, Chang H, Kwon SC, Simanshu DK, Patel DJ, Kim VN. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell, 2014, 159(6): 1365-1376.
doi: 10.1016/j.cell.2014.10.055
pmid: 25480299
|
[36] |
Chang H, Yeo J, Kim JG, Kim H, Lim J, Lee M, Kim HH, Ohk J, Jeon HY, Lee H, Jung H, Kim KW, Kim VN. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol Cell, 2018, 70(1): 72-82.e7.
doi: S1097-2765(18)30185-0
pmid: 29625039
|
[37] |
Morgan M, Much C, DiGiacomo M, Azzi C, Ivanova I, Vitsios DM, Pistolic J, Collier P, Moreira PN, Benes V, Enright AJ, O’Carroll D. mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature, 2017, 548(7667): 347-351.
doi: 10.1038/nature23318
|