遗传 ›› 2021, Vol. 43 ›› Issue (1): 40-51.doi: 10.16288/j.yczz.20-229
收稿日期:
2020-07-21
修回日期:
2020-11-19
出版日期:
2021-01-20
发布日期:
2021-01-07
通讯作者:
马月辉
E-mail:yuehui.ma@263.net
作者简介:
何晓红,博士,副研究员,研究方向:畜禽遗传资源研究。E-mail: 基金资助:
Xiaohong He, Lin Jiang, Yabin Pu, Qianjun Zhao, Yuehui Ma()
Received:
2020-07-21
Revised:
2020-11-19
Online:
2021-01-20
Published:
2021-01-07
Contact:
Ma Yuehui
E-mail:yuehui.ma@263.net
Supported by:
摘要:
角属于动物颅骨附属物,为反刍动物所特有。牛(Bos taurus)、绵羊(Ovis aries)角的表型包括野生型两角表型、人工驯化的无角表型、畸形角等多种。牛和绵羊是阐明角的质量性状和数量性状之间的关系以及质量性状的多基因调控机制等方面的理想动物模型。近年来,对角性状研究不断深入,在阐明新器官起源进化、自然选择、性别选择和人工选择对角表型的影响等方面取得了一系列进展。本文详细介绍了角的研究概况、多角表型遗传定位、无角位点基因遗传定位和畸形角等,并对目前牛和绵羊角的遗传机制及存在的问题进行了分析,以期为反刍动物角性状和其他特异性性状遗传机制研究提供参考。
何晓红, 蒋琳, 浦亚斌, 赵倩君, 马月辉. 牛、绵羊角的遗传定位及遗传机制研究进展[J]. 遗传, 2021, 43(1): 40-51.
Xiaohong He, Lin Jiang, Yabin Pu, Qianjun Zhao, Yuehui Ma. Progress on genetic mapping and genetic mechanism of cattle and sheep horns[J]. Hereditas(Beijing), 2021, 43(1): 40-51.
表1
绵羊角性状相关遗传区间、SNPs和候选基因"
表型或功能 | 遗传区间、候选基因或SNPs | 数据类型 | 分析方法 | 物种或品种 | 野生或家养 | 参考文献 |
---|---|---|---|---|---|---|
无角 | Chr.10: OarHH41、AGLA226 | 微卫星标记 | 连锁分析 | (美利奴羊×罗姆尼羊)×美利奴羊 | 家养 | [ |
Chr.10: 7.4 cM区间 | 微卫星和 等位酶标记 | 关联分析 | 索艾羊 | 野生 | [ | |
Chr.10: 200 kb区间 | SNPs | 连锁分析 | 美利奴羊×罗姆尼羊 | 家养 | [ | |
Chr.10:OAR10_29546872,RXFP2 | DNA芯片、 重测序数据 | 选择信号分析、关联分析和选择性清扫分析 | 陶赛特羊、美利奴羊;小尾寒羊、湖羊 | 家养 | [ | |
Chr.10:29.3~29.5 Mb,RXFP2、EEF1DP3 | DNA芯片、 测序 | 连锁不平衡分析、芯片GWAS分析、多态性检测 | 澳洲美利奴羊、Navajo-Churro绵羊、滩羊、萨福克羊 | 家养 | [ | |
RXFP2 3′UTR 1.8 kb片段插入 | 测序、分型 | 序列分析 | 7个瑞士绵羊品种 | 家养 | [ | |
角的多态性 | Chr.10:RXFP2 | DNA芯片;RXFP2基因型 | GWAS分析、选择系数和平衡频率分析、基因型之间的适应度差异分析 | 索艾羊 | 野生 | [ |
角的长度、 角的方向 | Chr.10:CSRD87、OarSEJ09 Chr.10:RXFP2 | 微卫星标记 DNA芯片、 重测序 | 连锁图谱QTL定位、GWAS分析、选择性清扫分析 | 索艾羊、大角羊、 藏绵羊 | 野生、家养 | [ |
角早期发育 | (1) SOX9和HOXD; (2) SOX10、SNAI1、SNAI2、TFAP2A、NGFR和COL11A2 | 基因组测序、 转录组数据 | 基因组、转录组分析 | 有角反刍动物 | 野生和家养 | [ |
畸形角 | COL6A2、COL6A1、PARVA、TNN、TNC | 蛋白质组学 数据 | 差异分析 | 阿勒泰羊 | 家养 | [ |
Chr.10:RXFP2 | DNA芯片 | GWAS分析 | 索艾羊 | 野生 | [ | |
多角表型 | Chr.2: 128~135 Mb、HOXD基因簇、MTX2、EVX2、KIAA1715 | DNA芯片、 重测序数据 | GWAS分析、关联分析和品种间的选择性清扫分析 | 阿勒泰羊、蒙古羊、泗水裘皮羊、Jacobs羊、Navajo-Churro羊和Damara绵羊 | 家养 | [ |
多角亚型 | Chr.2:132.8 Mb,MTX2、HOXD基因簇 | DNA芯片 | 芯片GWAS分析 | 多角藏绵羊 | 家养 | [ |
表2
牛角性状相关遗传突变和候选基因"
表型 | 突变位点、候选基因 | 数据类型 | 分析方法 | 品种 | 参考文献 |
---|---|---|---|---|---|
无角 | PC突变,IFNAR2、OLIG1 | DNA芯片,转录组 | 基因组纯合子分析、 差异表达分析 | 多个欧洲牛品种 | [ |
PF突变 | DNA芯片,全基因组测序 | 单体型分析 | 荷斯坦牛 | [ | |
PG突变 | 全基因组测序 | 基因型分析 | 内洛尔瘤牛 | [ | |
PM突变 | DNA芯片,全基因组测序 | 基因渗入分析 | 蒙古牦牛和蒙古Turano牛 | [ | |
RXPF2、FOXL2 | 转录组测序, | 差异表达分析 | 荷斯坦牛 | [ | |
OTOP3和OLIG1 | 基因组测序 | 正选择分析 | 牛科动物 | [ | |
畸形 | TWIST1 | DNA芯片 | 全基因组关联分析 | 夏洛莱牛 | [ |
[1] |
Dove WF . The physiology of horn growth: A study of the morphogenesis, the interaction of tissues, and the evolutionary processes of a Mendelian recessive character by means of transplantation of tissues. J Exp Zool, 2010,69(3):347-405.
doi: 10.1002/(ISSN)1097-010X |
[2] | Chen L, Qiu Q, Pan XY, Wang W . Evolutionary genotype- phenotype systems biology and study on the ruminant evolution. Scientia Sinica Vitae, 2019,49(4):223-232. |
陈垒, 邱强, 潘香羽, 王文 . 进化系统生物学与反刍动物的进化研究. 中国科学:生命科学, 2019,49(4):223-232. | |
[3] |
Davis EB, Brakora KA, Lee AH . Evolution of ruminant headgear: a review. Proc Biol Sci, 2011,278(1720):2857-2865.
doi: 10.1098/rspb.2011.0938 pmid: 21733893 |
[4] |
Lv FH, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW, Joost S, Li MH, Ajmone Marsan P . Adaptations to climate-mediated selective pressures in sheep. Mol Biol Evol, 2014,31(12):3324-3343.
doi: 10.1093/molbev/msu264 |
[5] |
Chen NB, Cai YD, Chen QM, Li R, Wang K, Huang YZ, Hu S, Huang SS, Zhang HC, Zheng ZQ, Song WN, Ma ZJ, Ma Y, Dang RH, Zhang ZJ, Xu L, Jia YT, Liu SZ, Yue XP, Deng WD, Zhang XM, Sun ZY, Lan XY, Han JL, Chen H, Bradley DG, Jiang Y, Lei CZ . Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat Commun, 2018,9(1):2337.
doi: 10.1038/s41467-018-04737-0 pmid: 29904051 |
[6] | Ritchie J . Four-horned sheep in Scotland. Nature, 1913,91(2262):10. |
[7] | Elwes HJ . Four-horned sheep. Nature, 1913,91(2265):86. |
[8] | Zhao YX, Li MH . Research advances on the origin, evolution and genetic diversity of Chinese native sheep breeds. Hereditas(Beijing), 2017,39(11):958-973. |
赵永欣, 李孟华 . 中国绵羊起源、进化和遗传多样性研究进展. 遗传, 2017,39(11):958-973. | |
[9] | Dýrmundsson, ÓR. Four-hornedness; a rare peculiarity still found in Icelandic sheep. The Icelandic Sheep Breeders of North America Newsletter, 2005,9(4):6-8. |
[10] |
Maiwashe AN, Blackburn HD . Genetic diversity in and conservation strategy considerations for Navajo Churro sheep. J Anim Sci, 2004,82(10):2900-2905.
doi: 10.2527/2004.82102900x pmid: 15484940 |
[11] | Sponenberg DP, Taylor C . Navajo-Churro sheep and wool in the United States. Animal Genetic Resources Information, 2009,45(45):99-105. |
[12] | Ryder ML . Sheep and man. Duckworth, London, 1983. |
[13] | Alderson L . Polycerate inheritance. Ark, 1992,19:177. |
[14] | Epstein H. The origin of the domestic animals of Africa. 1971, Africana Publishing Corporation, New York. |
[15] | Zhao QJ, Guan WJ, Qiao HY, Meng XR, Han JL, Li XC, He XH, Pu YB, Ma YH . Phylogenetics of domestic sheep and multi-horned sheep based on Cytb gene. Sci Agric Sinica, 2010,43(14):3005-3011. |
赵倩君, 关伟军, 乔海云, 孟详人, 韩建林, 李向臣, 何晓红, 浦亚斌, 马月辉 . 基于Cytb基因探讨家绵羊和多角绵羊的系统发育. 中国农业科学, 2010,43(14):3005-3011. | |
[16] | Joken Anwax . Study on the biological characteristics and genetic diversity of Bashbay sheep[Dissertation]. Nanjing Agriculture University, 2010. |
决肯·阿尼瓦什. 巴什拜羊生物学特性及其遗传多样性研究[学位论文]. 南京农业大学, 2010. | |
[17] | 决肯·阿尼瓦什, 哈米提·哈凯莫夫, 买买提明·巴拉提. 巴什拜羊质量性状遗传的初步研究. 草食家畜, 1998(2):12-14. |
[18] | 何绍钦, 刘召乾, 刘家园 . 世界多角绵羊品种—泗水裘皮羊. 中国畜牧兽医, 2007,34(8):133-135. |
[19] |
He XH, Song S, Chen XF, Song TZ, Lobsang T, Guan WJ, Pu YB, Zhao QJ, Jiang L, Ma YH . Genome-wide association analysis reveals the common genetic locus for both the typical and atypical polycerate phenotype in Tibetan sheep. Anim Genet, 2018,49(2):142-143.
doi: 10.1111/age.12644 pmid: 29441598 |
[20] | Noodle BA . Polycerate sheep: Past history and present problems. Ark, 1980,7(5):156-164. |
[21] | Alderson L . A review of HEBRID. Ark, 2007, 26-29. |
[22] |
He XH, Zhou ZK, Pu YB, Chen XF, Ma YH, Jiang L . Mapping the four-horned locus and testing the polled locus in three Chinese sheep breeds. Anim Genet, 2016,47(5):623-627.
doi: 10.1111/age.12464 pmid: 27427781 |
[23] |
Ren X, Yang GL, Peng WF, Zhao YX, Zhang M, Chen ZH, Wu FA, Kantanen J, Shen M, Li MH . A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries). Sci Rep, 2016,6:21111.
doi: 10.1038/srep21111 pmid: 26883901 |
[24] |
Kijas JW, Hadfield T, Naval Sanchez M, Cockett N . Genome-wide association reveals the locus responsible for four-horned ruminant. Anim Genet, 2016,47(2):258-262.
doi: 10.1111/age.12409 pmid: 26767438 |
[25] |
Greyvenstein OF, Reich CM, van Marle-Koster E, Riley DG, Hayes BJ. Polyceraty (multi-horns) in Damara sheep maps to ovine chromosome 2. Anim Genet, 2016,47(2):263-266.
doi: 10.1111/age.12411 pmid: 26767563 |
[26] |
Li X, Yang J, Shen M, Xie XL, Liu GJ, Xu YX, Lv FH, Yang H, Yang YL, Liu CB, Zhou P, Wan PC, Zhang YS, Gao L, Yang JQ, Pi WH, Ren YL, Shen ZQ, Wang F, Deng J, Xu SS, Hosein SD, Hehua E, Esmailizadeh A, Mostafa DQ, Štěpánek O, Weimann C, Erhardt G, Amane A, Mwacharo JM, Han JL, Hanotte O, Lenstra JA, Kantanen J, Coltman DW, Kijas JW, Bruford MW, Periasamy K, Wang XH, Li MH . Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat Commun, 2020,11(1):2815.
doi: 10.1038/s41467-020-16485-1 pmid: 32499537 |
[27] |
Georges M, Drinkwater R, King T, Mishra A, Moore SS, Nielsen D, Sargeant LS, Sorensen A, Steele MR, Zhao X, Womack J, Hetzel J . Microsatellite mapping of a gene affecting horn development in Bos taurus. Nat Genet, 1993,4(2):206-210.
doi: 10.1038/ng0693-206 pmid: 8348158 |
[28] |
Schmutz SM, Marquess FL, Berryere TG, Moker JS . DNA marker-assisted selection of the polled condition in Charolais cattle. Mamm Genome, 1995,6(10):710-713.
doi: 10.1007/BF00354293 pmid: 8563169 |
[29] |
Medugorac I, Seichter D, Graf A, Russ I, Blum H, Göpel KH, Rothammer S, Förster M, Krebs S . Bovine polledness--an autosomal dominant trait with allelic heterogeneity. PLoS One, 2012,7(6):e39477.
doi: 10.1371/journal.pone.0039477 pmid: 22737241 |
[30] |
Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC . Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol, 2016,34(5):479-481.
doi: 10.1038/nbt.3560 |
[31] |
Rothammer S, Capitan A, Mullaart E, Seichter D, Russ I, Medugorac I . The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet Sel Evol, 2014,46(1):44.
doi: 10.1186/1297-9686-46-44 |
[32] |
Wiedemar N, Tetens J, Jagannathan V, Menoud A, Neuenschwander S, Bruggmann R, Thaller G, Drögemüller C . Independent polled mutations leading to complex gene expression differences in cattle. PLoS One, 2014,9(3):e93435, doi: 10.1371/journal.pone.0093435.
doi: 10.1371/journal.pone.0093435 pmid: 24671182 |
[33] |
Utsunomiya YT, Torrecilha RBP, Milanesi M, de Cássia Paulan S, Utsunomiya ATH, Garcia JF,. Hornless Nellore cattle (Bos indicus) carrying a novel 110 kbp duplication variant of the polled locus. Anim Genet, 2019,50(2):187-188.
doi: 10.1111/age.12764 pmid: 30644114 |
[34] |
Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y, Gladyr E, Zinovieva N, Barbieri J, Seichter D, Russ I . Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat Genet, 2017,49(3):470-475.
doi: 10.1038/ng.3775 pmid: 28135247 |
[35] |
Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I, Bouet S, Rothammer S, Wahlberg P, Esquerré D, Hoze C, Boussaha M, Weiss B, Thépot D, Fouilloux MN, Rossignol MN, van Marle-Köster E, Hreiðarsdóttir GE, Barbey S, Dozias D, Cobo E, Reversé P, Catros O, Marchand JL, Soulas P, Roy P, Marquant-Leguienne B, Bourhis DL, Clément L, Salas-Cortes L, Venot E, Pannetier M, Phocas F, Klopp C, Rocha D, Fouchet M, Journaux L, Bernard-Capel C, Ponsart C, Eggen A, Blum H, Gallard Y, Boichard D, Pailhoux E, Capitan A. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS One, 2013,8(5):e63512.
doi: 10.1371/journal.pone.0063512 pmid: 23717440 |
[36] |
Li MN, Wu XY, Guo X, Bao PJ, Ding XZ, Chu M, Liang CN, Yan P . Comparative iTRAQ proteomics revealed proteins associated with horn development in yak. Proteome Sci, 2018,16(1):14.
doi: 10.1186/s12953-018-0141-9 |
[37] |
Kijas JW, Lenstra JA, Hayes B, Boitard S, Neto LRP, Cristobal MS, Servin B, Mcculloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, Raadsma H, McEwan J, Dalrymple B. International Sheep Genomics Consortium Members. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol, 2012,10(2):e1001258.
doi: 10.1371/journal.pbio.1001258 pmid: 22346734 |
[38] |
Lundrigan B . Morphology of horns and fighting behavior in the family Bovidae. J Mammal, 1996,77(2):462-475.
doi: 10.2307/1382822 |
[39] | Dolling CHS. Breeding Merinos. Rigby, Adelaide, Australia, 1970. |
[40] |
Montgomery GW, Henry HM, Dodds KG, Beattie AE, Wuliji T, Crawford AM . Mapping the Horns (Ho) locus in sheep: a further locus controlling horn development in domestic animals. J Hered, 1996,87(5):358-363.
doi: 10.1093/oxfordjournals.jhered.a023014 pmid: 8904835 |
[41] | Pickering N, Johnson T, Auvray B, Dodds KG, McEwan JC. Mapping the horns locus in sheep. In: Proceedings of the Association for the Advancement of Animal Breeding and Genetics. Barossa Valley, South Australia, 2009,18:88-91. |
[42] |
Dominik S, Henshall JM, Hayes BJ . A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep. Anim Genet, 2012,43(4):468-470.
doi: 10.1111/j.1365-2052.2011.02271.x |
[43] |
Duijvesteijn N, Bolormaa S, Daetwyler HD, van der Werf JHJ. Genomic prediction of the polled and horned phenotypes in Merino sheep. Genet Sel Evol, 2018,50(1):28.
doi: 10.1186/s12711-018-0398-6 pmid: 29788905 |
[44] |
Beraldi D, Mcrae AF, Gratten J, Slate J, Visscher PM, Pemberton JM . Development of a linkage map and mapping of phenotypic polymorphisms in a free-living population of Soay sheep (Ovis aries). Genetics, 2006,173(3):1521-1537.
doi: 10.1534/genetics.106.057141 pmid: 16868121 |
[45] |
Poissant J, Davis CS, Malenfant RM, Hogg JT, Coltman DW . QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep. Heredity, 2011,108(3):256-263.
doi: 10.1038/hdy.2011.69 pmid: 21847139 |
[46] |
Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, Mcwilliam S, Stephenson J, Allendorf FW, Hogg JT, Kijas J . Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol, 2015,24(22):5616-5632.
doi: 10.1111/mec.13415 pmid: 26454263 |
[47] |
Martin AM, Festa-Bianchet M, Coltman DW, Pelletier F . Demographic drivers of age-dependent sexual selection. J Evol Biol, 2016,29(7):1437-1446.
doi: 10.1111/jeb.12883 pmid: 27090379 |
[48] |
Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J. Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity, 2010,104(2):196-205.
doi: 10.1038/hdy.2009.109 pmid: 19690581 |
[49] |
Johnston SE, Mcewan JC, Pickering NK, Kijas JW, Beraldi D, Pilkington JG, Pemberton JM, Slate J . Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol, 2011,20(12):2555-2566.
doi: 10.1111/j.1365-294X.2011.05076.x |
[50] |
Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J . Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature, 2013,502(7469):93-95.
doi: 10.1038/nature12489 |
[51] |
Wiedemar N, Drögemüller C . A 1.8-kb insertion in the 3'-UTR of RXFP2 is associated with polledness in sheep. Anim Genet, 2015,46(4):457-461.
doi: 10.1111/age.12309 pmid: 26103004 |
[52] |
Wang XL, Zhou GX, Li Q, Zhao DF, Chen YL . Discovery of SNPs in RXFP2 related to horn types in sheep. Small Ruminant Res, 2014,116(2-3):133-136.
doi: 10.1016/j.smallrumres.2013.10.022 |
[53] |
Lühken G, Krebs S, Rothammer S, Küpper J, Mioč B, Russ I, Medugorac I . The 1.78-kb insertion in the 3'-untranslated region of RXFP2 does not segregate with horn status in sheep breeds with variable horn status. Genet Sel Evol, 2016,48(1):78.
doi: 10.1186/s12711-016-0256-3 pmid: 27760516 |
[54] |
Miller JM, Festa-Bianchet M, Coltman DW . Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium ® HD SNP BeadChip . Peerj, 2018,6(5):e4364.
doi: 10.7717/peerj.4364 |
[55] |
Pan ZY, Li SD, Liu QY, Wang Z, Zhou ZK, Di R, Miao BP, Hu WP, Wang XY, Hu XX, Xu Z, Wei DK, He XY, Yuan LY, Guo XF, Liang BM, Wang RC, Li XY, Cao XH, Dong XL, Xia Q, Shi HC, Hao G, Yang J, Luosang CC, Zhao YQ, Jin M, Zhang YJ, Lv SJ, Li FK, Ding GH, Chu MX, Li YX. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. Gigascience, 2018, 7(4): giy019.
doi: 10.1093/gigascience/gix134 pmid: 29300887 |
[56] |
Ibsen HL . Horn and scur inheritance in certain breeds of sheep. Am Nat, 1944,78(779):506-516.
doi: 10.1086/281224 |
[57] |
Kyselý R . Breed character or pathology? Cattle with loose horns from the Eneolithic site of Hostivice-Litovice (Czech Republic). J Archaeol Sci, 2010,37(6):1241-1246.
doi: 10.1016/j.jas.2009.12.024 |
[58] |
Asai M, Berryere TG, Schmutz SM . The scurs locus in cattle maps to bovine chromosome 19. Anim Genet, 2004,35(1):34-39.
doi: 10.1111/j.1365-2052.2003.01079.x pmid: 14731227 |
[59] |
Capitan A, Grohs C, Weiss B, Rossignol MN, Reversé P, Eggen A . A newly described Bovine type 2 scurs syndrome segregates with a frame-shift mutation in TWIST1. PLoS One, 2011,6(7):e22242.
doi: 10.1371/journal.pone.0022242 pmid: 21814570 |
[60] |
White WT, Ibsen HL . Horn inheritance in Galloway- Holstein cattle crosses. J Genet, 1936,32(1):33-49.
doi: 10.1007/BF02982500 |
[61] |
Capitan A, Grohs C, Gautier M, Eggen A . The scurs inheritance: new insights from the French Charolais breed. BMC Genet, 2009,10:33.
doi: 10.1186/1471-2156-10-33 pmid: 19575823 |
[62] |
He XH, Chen XF, Pu YB, Guan WJ, Song S, Zhao QJ, LI XC, Jiang L, Ma YH. iTRAQ-based quantitative proteomic analysis reveals key pathways responsible for scurs in sheep (Ovis aries). J Integr Agric, 2018,17(8):1843-1851.
doi: 10.1016/S2095-3119(17)61894-X |
[63] |
Albelda SM, Buck CA . Integrins and other cell adhesion molecules. FASEB J, 1990,4(11):2868-2880.
pmid: 2199285 |
[64] |
Myking S, Myhre R, Gjessing HK, Morken NH, Sengpiel V, Williams SM, Ryckman KK, Magnus P, Jacobsson B . Candidate gene analysis of spontaneous preterm delivery: New insights from re-analysis of a case-control study using case-parent triads and control-mother dyads. BMC Med Genet, 2011,12:174.
doi: 10.1186/1471-2350-12-174 pmid: 22208904 |
[65] |
Satoh JI, Kino Y, Niida S . MicroRNA-seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data. Biomark Insights, 2015,10:21-31.
doi: 10.4137/BMI.S25132 pmid: 25922570 |
[66] |
Mariasegaram M, Reverter A, Barris W, Lehnert SA, Dalrymple B, Prayaga K . Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle. BMC Genomics, 2010,11(1):370.
doi: 10.1186/1471-2164-11-370 |
[67] |
Qin D, Zhang GM, Xu X, Wang LY . The PI3K/Akt signaling pathway mediates the high glucose-induced expression of extracellular matrix molecules in human retinal pigment epithelial cells. J Diabetes Res, 2015,2015:920280.
doi: 10.1155/2015/920280 pmid: 25695094 |
[68] | Castillo AB, Blundo JT, Chen JC, Lee KL, Yereddi NR, Jang E, Kumar S, Tang WJ, Zarrin S, Kim JB, Jacobs CR . Focal adhesion kinase plays a role in osteoblast mechanotransduction in vitro but does not affect load-induced bone formation in vivo. PLoS One, 2012,7(9):e43291. |
[69] |
Smith ADB . The inheritance of horns in cattle some further data. J Genet, 1927,18(3):365-374.
doi: 10.1007/BF02983113 |
[70] | Wang Y, Zhang CZ, Wang NN, Li ZP, Heller R, Liu R, Zhao Y, Han JG, Pan XY, Zheng ZQ, Dai XQ, Chen CS, Dou ML, Peng SJ, Chen XQ, Liu J, Li M, Wang K, Liu C, Lin ZS, Chen L, Hao F, Zhu WB, Song CC, Zhao C, Zheng CL, Wang JM, Hu SW, Li CY, Yang H, Jiang L, Li GY, Liu MJ, Sonstegard TS, Zhang GJ, Jiang Y, Wang W, Qiu Q. Genetic basis of ruminant headgear and rapid antler regeneration. Science, 2019, 364(6446): eaav6335. |
[71] |
Betancur P, Bronner-Fraser M, Sauka-Spengler T . Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol, 2010,26:581-603.
doi: 10.1146/annurev.cellbio.042308.113245 pmid: 19575671 |
[72] |
Tetens J, Wiedemar N, Menoud A, Thaller G, Drgemüller C . Association mapping of the scurs locus in polled Simmental cattle-evidence for genetic heterogeneity. Anim Genet, 2015,46(2):224-225.
doi: 10.1111/age.12237 pmid: 25645725 |
[73] |
Jin SW, Sim KB, Kim SD . Development and growth of the normal cranial vault: an embryologic review. J Korean Neurosurg Soc, 2016,59(3):192-196.
doi: 10.3340/jkns.2016.59.3.192 pmid: 27226848 |
[74] |
Wu TF, Chen GQ, Tian F, Liu HX . Contribution of cranial neural crest cells to mouse skull development. Int J Dev Biol, 2017,61(8-9):495-503.
doi: 10.1387/ijdb.170051gc pmid: 29139535 |
[75] |
Kalluri R, Weinberg RA . The basics of epithelial- mesenchymal transition. J Clin Invest, 2009,119(6):1420-1428.
doi: 10.1172/JCI39104 pmid: 19487818 |
[76] |
Huang YY, Meng T, Wang SZ, Zhang H, Mues G, Qin CL, Feng JQ, D'Souza RN, Lu YB. Twist1- and Twist2- haploinsufficiency results in reduced bone formation. PLoS One, 2014,9(6):e99331.
doi: 10.1371/journal.pone.0099331 pmid: 24971743 |
[77] |
Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, Tamai K, Kaneda Y . Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling. J Cell Sci, 2007,120(Pt 8):1350-1357.
doi: 10.1242/jcs.000067 pmid: 17374642 |
[78] |
Chen T, You YN, Jiang H, Wang ZZ,. Epithelial- Mesenchymal Transition( EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol, 2017,232(12):3261-3272.
doi: 10.1002/jcp.25797 pmid: 28079253 |
[79] |
Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Giannini S, Zaccolo M, Facciolli A, Morello R, Agoulnik AI, Foresta C . Mutations in the insulin-like factor 3 receptor are associated with osteoporosis. J Bone Miner Res, 2008,23(5):683-693.
doi: 10.1359/jbmr.080204 pmid: 18433302 |
[80] | Duarte C, Kobayashi Y, Kawamoto T, Moriyama K . RELAXIN enhances differentiation and matrix mineralization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells in vitro. Bone, 2014,65:92-101. |
[81] |
Bordbari MH, Penedo MCT, Aleman M, Valberg SJ, Mickelson J, Finno CJ . Deletion of 2.7 kb near HoxD3 in an Arabian horse with occipitoatlantoaxial malformation. Anim Genet, 2017,48(3):287-294.
doi: 10.1111/age.12531 pmid: 28111759 |
[82] |
Goodman F, Giovannucci-uzielli ML, Hall C, Reardon W, Winter R, Scambler P,. Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families. Am J Hum Genet, 1998,63(4):992-1000.
doi: 10.1086/302070 pmid: 9758628 |
[83] |
Delpretti S, Zakany J, Duboule D . A function for all posterior Hoxd genes during digit development? Dev Dyn, 2012,241(4):792-802.
doi: 10.1002/dvdy.23756 pmid: 22374744 |
[84] |
Beccari L, Yakushiji-kaminatsui N, Woltering JM, Necsulea A, Lonfat N, Rodríguez-Carballo E, Mascrez B, Yamamoto S, Kuroiwa A, Duboule D. A role for hox13 proteins in the regulatory switch between tads at the hoxd locus. Genes Dev, 2016,30(10):1172-1186.
doi: 10.1101/gad.281055.116 pmid: 27198226 |
[85] |
Ros MA . HOX13 proteins: the molecular switcher in Hoxd bimodal regulation. Genes Dev, 2016,30(10):1135-1137.
doi: 10.1101/gad.283598.116 pmid: 27222515 |
[86] |
Jerković I, Ibrahim DM, Andrey G, Haas S, Hansen P, Janetzki C, Navarrete IG, Robinson PN, Hecht J, Mundlos S . Genome-wide binding of posterior HOXA/D transcription factors reveals subgrouping and association with CTCF. PLoS Genet, 2017,13(1):e1006567.
doi: 10.1371/journal.pgen.1006567 pmid: 28103242 |
[87] |
Zhu B, Zhang M, Zhao J . Microstructure and mechanical properties of sheep horn. Microsc Res Tech, 2016,79(7):664-674.
doi: 10.1002/jemt.22681 pmid: 27184115 |
[88] |
Sheeba CJ, Andrade RP, Palmeirim I . Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development. Semin Cell Dev Biol, 2016,49:125-134.
doi: 10.1016/j.semcdb.2016.01.010 pmid: 26805722 |
[89] |
Lin ZS, Chen L, Chen XQ, Zhong YB, Yang Y, Xia WH, Liu C, Zhu WB, Wang H, Yan BY, Yang YF, Liu X, Kvie KS, Røed KH, Wang K, Xiao WH, Wei HJ, Li GY, Heller R, Gilber MTP, Qiu Q, Wang W, Li ZP. Biological adaptations in the Arctic cervid, the reindeer(Rangifer tarandus). Science, 2019, 364(6446): eaav6312.
doi: 10.1126/science.aax8961 pmid: 31221842 |
[1] | 龚一鸣, 王翔宇, 贺小云, 刘玉芳, 余平, 储明星, 狄冉. 绵羊FecB突变对BMPR1B活性及BMP/SMAD通路的影响研究进展[J]. 遗传, 2023, 45(4): 295-305. |
[2] | 王心缘, 孙睿, 高原青. Prader-Willi综合征下丘脑功能障碍的遗传机制研究进展[J]. 遗传, 2022, 44(10): 899-912. |
[3] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[4] | 王冰源, 牟玉莲, 李奎, 刘志国. 农业动物干细胞研究进展[J]. 遗传, 2020, 42(11): 1073-1080. |
[5] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[6] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[7] | 夏青, 刘秋月, 王翔宇, 胡文萍, 李春艳, 贺小云, 储明星, 狄冉. 绵羊季节性繁殖分子机制及休情季节诱导绵羊发情配种技术[J]. 遗传, 2018, 40(5): 369-377. |
[8] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[9] | 李平华, 马翔, 张叶秋, 张倩, 黄瑞华. 影响二花脸猪高产仔性能的生理及遗传机制研究进展[J]. 遗传, 2017, 39(11): 1016-1024. |
[10] | 赵永欣, 李孟华, 赵要风. 中国绵羊起源、进化和遗传多样性研究进展[J]. 遗传, 2017, 39(11): 958-973. |
[11] | 王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[12] | 陈天直, 赵兵令, 刘宇, 赵园园, 王海东, 范瑞文, 王鹏超, 董常生. GPR143在绵羊皮肤组织中的表达及定位分析[J]. 遗传, 2016, 38(7): 658-665. |
[13] | 殷丽琴, 付绍红, 杨进, 李云, 王继胜, 王茂林. 植物单倍体的产生、鉴定、形成机理及应用[J]. 遗传, 2016, 38(11): 979-991. |
[14] | 高磊,沈敏,甘尚权,杨井泉,张译元. 绵羊CCNG1基因克隆及表达分析[J]. 遗传, 2015, 37(4): 374-381. |
[15] | 王春玲 孟晨玲 曹少先 张俊 孟春花 王慧利 方永飞 朱冬冬 茆达干. 湖羊、东湖杂种羊POMC基因外显子3单核苷酸多态性及其与生长性状的关联分析[J]. 遗传, 2013, 35(9): 1095-1100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: