遗传 ›› 2022, Vol. 44 ›› Issue (12): 1089-1102.doi: 10.16288/j.yczz.22-221
收稿日期:
2022-06-28
修回日期:
2022-08-29
出版日期:
2022-12-20
发布日期:
2022-09-26
通讯作者:
张永彪
E-mail:maocyy@126.com;zhangyongbiao@buaa.edu.cn
作者简介:
毛轲,在读博士研究生,研究方向:生物与医学工程。E-mail: 基金资助:
Ke Mao1(), Ziqiu Meng2, Yongbiao Zhang2,3()
Received:
2022-06-28
Revised:
2022-08-29
Online:
2022-12-20
Published:
2022-09-26
Contact:
Zhang Yongbiao
E-mail:maocyy@126.com;zhangyongbiao@buaa.edu.cn
Supported by:
摘要:
颅面部赋予脊椎动物无与伦比的进化优势,其由颅神经嵴细胞发育而来的骨、软骨、神经、肌肉等组织组成,使脊椎动物具备了复杂的神经和感官系统。神经嵴细胞是脊椎动物特有的具备迁移性、多能性的细胞类群,它们在增殖、迁移、分化过程中受到多个基因网络的时序调控,从而参与复杂颅面部的形成。同时,颅面部又是一组高度可遗传的表型组合,并具有两个特征:在亲缘后代中的可遗传性及在不同个体间的高度可变性,这两个特征分别提示了颅神经嵴细胞发育调控网络的精准性和可塑性。调控网络内基因适度突变会改变颅神经嵴细胞的增殖和分化从而产生表型可塑性,而有害的遗传突变则将导致畸形产生。本文梳理了对颅面部发育起决定作用的神经嵴细胞的发育过程及基因调控网络,在遗传层面总结了已知的颅面部表型多样性的决定基础和颅面畸形的致病机制,以期为了解颅面部发育过程以及为颅面疾病的防控提供全面认知。
毛轲, 孟子秋, 张永彪. 神经嵴发育调控及颅面部遗传基础研究进展[J]. 遗传, 2022, 44(12): 1089-1102.
Ke Mao, Ziqiu Meng, Yongbiao Zhang. Progress on the regulation of neural crest and the genetics in craniofacial development[J]. Hereditas(Beijing), 2022, 44(12): 1089-1102.
图1
神经嵴细胞形成、迁移、分化示意图 A:神经嵴发育模式图。神经嵴细胞起源于神经板边界(绿色),该结构在胚胎原肠胚期位于神经板(蓝色)和非神经外胚层之间(灰色),随着神经管的发育,神经嵴细胞经过上皮间充质转化后形成成熟的神经嵴细胞(绿色),从神经管背侧迁移出。B:神经嵴细胞亚群及分化类型。神经嵴细胞亚群根据其轴向分布依次分为颅、迷走、躯干、骶神经嵴细胞。C:以小鼠E9.5的模式图为例展示神经嵴迁移路线。神经嵴迁移时,胚胎后脑便形成8个菱脑原节(rhombomeres1-8, R1~8);来自前脑、中脑的神经嵴细胞迁入胚胎颅面突起部位,来自菱脑R1和R2的细胞定向迁入第一咽弓(pharyngeal arch 1, PA1),而第二咽弓(PA2)主要是由菱脑R3和R4迁出的细胞形成。D:神经嵴在颅面部分化的组织展示。来自PA1、PA2的神经嵴细胞贡献了颌面部大部分颅面骨骼。"
图2
神经嵴发育的基因调控网络及位置识别的转录程序:Hox和Dlx A:神经嵴发育的基因调控网络。简化描绘了脊椎动物神经嵴细胞的GRN,由不同层次组织的信号分子模块和每个阶段的转录因子组成,神经嵴发育包括神经嵴诱导(induction)、特征化(specification)、迁移(migration)以及分化(differentiation)过程,分别对应不同颜色的模块表示,箭头代表调控激活。B:Hox基因在小鼠胚胎咽弓的表达模式。沿胚胎前后轴方向,Hox基因为神经嵴细胞提供了在咽弓内的空间识别信息,小鼠胚胎每个咽弓的不同颜色表示其特定的Hox表达模式。C:Dlx基因在小鼠胚胎咽弓的表达模式。沿咽弓背腹侧,Dlx基因为颅神经嵴细胞提供空间识别信息,Dlx基因在咽弓中由近到远端呈嵌套区域式表达。"
表1
与颅面特征关联的基因"
人群 | 数量 | 关联基因 | 关联的面部器官 | 参考文献 |
---|---|---|---|---|
欧洲 | 5388 | PRDM6、PAX3、TP63、C5orf50、COL17A1 | 鼻、眼 | [ |
欧洲 | 2185 | PAX3 | 鼻 | [ |
欧洲 | 3118 | PAX9/MIPOL1、MAFB、ALX3、HDAC8、PAX1、RNASE3/ ZNF219 | 颅宽、鼻、眼 | [ |
美洲 | 6275 | DCHS2、SUPT3H/RUNX2 、GLI3、PAX1、EDAR、PAX3 | 鼻、下巴 | [ |
欧亚 | 694 | UBASH3B、COL23A1、PCDH7、LOC730100、BMP2、LINC02008 | 眼、嘴、鼻、脸颊 | [ |
东亚 | 5643 | OSR1-WDR35、HOXD1-MTX2、WDR27 、SOX9 、DHX35 | 脸部角度、眼、鼻 | [ |
欧洲 | 10115 | CASZ1、ARHGEF19、TBX15、RPE65、LRRTM4、PAX3、CMSS1、INTU、RNF144B、KIF6、CSMD1、DCAF4L2、ROR2、SUPV3L1、TBX3、LINC00371、C14orf64、SALL1、RPGRIP1L、CASC17、SOX9、PAX1 | 鼻、眼、唇 | [ |
欧亚 | 612 | PRDM16、LYPLAL1、EDAR、PAX3、CACNA2D3、SUPT3H、DKK1、TNFSF12 | 鼻、眼 | [ |
亚洲 | 50 | RGPD3、IGSF3、SLC28A3、USP40 | 颅骨形态、面部性状、鼻、耳 | [ |
美洲 | 6169 | IGSF11、STXBP5-AS1、COBL、HDAC9、CPED1/WNT16、VPS13B、LSP1、SMG6 | 鼻、眼、下巴、唇、前额 | [ |
欧洲 | 2187 | PARK2、HDAC8、FREM1 | 鼻、唇 | [ |
欧洲 | 58032 | 94个变异位点涉及64个基因,包括HOXD cluster、BMP4、MSX2、PAX3、SOX9、BMP7、ROBO1、GSC、TBX15、FREM1、ZIC1等 | 下巴酒窝,鼻子大小 | [ |
非洲 | 3505 | SCHIP1、PDE8A、TFAP2B、KHDRBS3 | 面部形状、大小,眼,唇 | [ |
欧洲 | 3399 | TMEM163、PCDH15、MBTPS1 | 眼、面部 | [ |
亚洲 | 2659 | DENND1B、PISRT1、DCHS2/SFRP2、VPS13B | 下巴、眼、鼻 | [ |
欧洲 | 2329 | 筛选出38个基因位点其中15个在独立样本群中得以验证,包括 TBX15、ASPM、PAX3、DCSH2、SOX9等 | 鼻、下巴 | [ |
欧洲 | 8246 | 筛选出203个基因组显著性信号,涉及181个基因,包括BMP4、BMP7、FGF8、DHX35、INTU、PAX7、PAX3、SOX9、TWIST1、COL11A2、WIF1 ZIC3、SNAI2、TCF4、MSX1、FGFR2、WIF1、WNT16等 | 嘴唇、鼻子、上庭、下庭 | [ |
亚洲 | 6968 | 筛选出166个基因位点包括244个变异位点,涉及204个基因,包括PAX1、PAX3、DCHS2、SOX9、DHX35、ALX、BMP4、MSX2、PAX7、DLX5、TCF4、MSX1、ETS1、HDAC9、TFAP2B等 | 整个面部、上颌骨、鼻(关联位点最多)、上唇、下唇、前额、颧骨、颞部、眼、眉间距、下颌骨 | [ |
[1] |
Kuratani S. Craniofacial development and the evolution of the vertebrates: the old problems on a new background. Zoolog Sci, 2005, 22(1): 1-19.
doi: 10.2108/zsj.22.1 |
[2] |
Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest. Development, 2020, 147(20): dev193888.
doi: 10.1242/dev.193888 |
[3] |
Martik ML, Bronner ME. Riding the crest to get a head: neural crest evolution in vertebrates. Nat Rev Neurosci, 2021, 22: 616-626.
doi: 10.1038/s41583-021-00503-2 pmid: 34471282 |
[4] | Hovland AS, Rothstein M, Simoes-Costa M. Network architecture and regulatory logic in neural crest development. Wiley Interdiscip Rev Syst Biol Med, 2020, 12(2): e1468. |
[5] |
White JD, Indencleef K, Naqvi S, Eller RJ, Hoskens H, Roosenboom J, Lee MK, Li J, Mohammed J, Richmond S, Quillen EE, Norton HL, Feingold E, Swigut T, Marazita ML, Peeters H, Hens G, Shaffer JR, Wysocka J, Walsh S, Weinberg SM, Shriver MD, Claes P. Insights into the genetic architecture of the human face. Nat Genet, 2021, 53(1): 45-53.
doi: 10.1038/s41588-020-00741-7 pmid: 33288918 |
[6] |
Schmetz A, Amiel J, Wieczorek D. Genetics of craniofacial malformations. Semin Fetal Neonatal Med, 2021, 26(6): 101290.
doi: 10.1016/j.siny.2021.101290 |
[7] |
Siismets EM, Hatch NE. Cranial neural crest cells and their role in the pathogenesis of craniofacial anomalies and coronal craniosynostosis. J Dev Biol, 2020, 8(3): 18.
doi: 10.3390/jdb8030018 |
[8] | Hörstadius S. The Neural Crest:Its Properties and Derivatives in the Light of Experimental Research. New York: Oxford University Press, 1950. |
[9] | Bae C-J, Saint-Jeannet J-P. Induction and specification of neural crest cells. Neural Crest Cells, 2014: 27-49. |
[10] | Vega-Lopez GA, Cerrizuela S, Tribulo C, Aybar MJ. Neurocristopathies: new insights 150 years after the neural crest discovery. Dev Biol, 2018: 444. |
[11] |
Rothstein M, Bhattacharya D, Simoes-Costa M. The molecular basis of neural crest axial identity. Dev Bio, 2018, 444(Suppl 1): S170-S180.
doi: 10.1016/j.ydbio.2018.07.026 |
[12] |
Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone, 2020, 137: 115409.
doi: 10.1016/j.bone.2020.115409 |
[13] |
Le Douarin NM, Dupin E. The “beginnings” of the neural crest. Dev Biol, 2018, 444(Suppl 1): S3-S13.
doi: 10.1016/j.ydbio.2018.07.019 |
[14] |
Szabó A, Mayor R. Mechanisms of neural crest migration. Annu Rev Genet, 2018, 52: 43-63.
doi: 10.1146/annurev-genet-120417-031559 pmid: 30476447 |
[15] |
Betancur P, Bronner-Fraser M, Sauka-Spengler T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol, 2010, 26: 581-603.
doi: 10.1146/annurev.cellbio.042308.113245 pmid: 19575671 |
[16] |
Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, Monsoro-Burq AH. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev Biol, 2014, 386(2): 461-472.
doi: 10.1016/j.ydbio.2013.12.010 |
[17] |
Groves AK, LaBonne C. Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev Biol, 2014, 389(1): 2-12.
doi: 10.1016/j.ydbio.2013.11.027 pmid: 24321819 |
[18] |
Martik ML, Bronner ME. Regulatory logic underlying diversification of the neural crest. Trends Genet, 2017, 33(10): 715-727.
doi: S0168-9525(17)30132-4 pmid: 28851604 |
[19] |
Maczkowiak F, Monsoro-Burq AH. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc Natl Acad Sci USA, 2011, 108(1): 155-160.
doi: 10.1073/pnas.1010740107 |
[20] |
Ferronha T, Rabadán MA, Gil-Guiñon E, Le Dréau G, de Torres C, Martí E. LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells. J Neurosci, 2013, 33(7): 2773-2783.
doi: 10.1523/JNEUROSCI.4511-12.2013 pmid: 23407937 |
[21] |
Hutchins EJ, Bronner ME. Draxin acts as a molecular rheostat of canonical Wnt signaling to control cranial neural crest EMT. J Cell Biol, 2018, 217(10): 3683-3697.
doi: 10.1083/jcb.201709149 pmid: 30026247 |
[22] |
Kelsh RN. Sorting out Sox 10 functions in neural crest development. Bioessays, 2006, 28(8): 788-798.
doi: 10.1002/bies.20445 |
[23] |
Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, Bondurand N. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol, 2013, 379(1): 92-106.
doi: 10.1016/j.ydbio.2013.04.013 pmid: 23608456 |
[24] |
Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature, 2008, 456(7224): 957-961.
doi: 10.1038/nature07441 |
[25] |
Betancur P, Bronner-Fraser M, Sauka-Spengler T. Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc Natl Acad Sci USA, 2010, 107(8): 3570-3575.
doi: 10.1073/pnas.0906596107 |
[26] |
Wilson J, Tucker AS. Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. Dev Biol, 2004, 266(1): 138-150.
pmid: 14729484 |
[27] |
Creuzet S, Schuler B, Couly G, Le Douarin NM. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci USA, 2004, 101(14): 4843-4847.
doi: 10.1073/pnas.0400869101 |
[28] |
Mossahebi-Mohammadi M, Quan MY, Zhang JS, Li XK. FGF signaling pathway: a key regulator of stem cell pluripotency. Front Cell Dev Biol, 2020, 8: 79.
doi: 10.3389/fcell.2020.00079 pmid: 32133359 |
[29] |
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super- enhancers to drive chondrogenesis. Nucleic Acids Res, 2015, 43(17):8183-8203.
doi: 10.1093/nar/gkv688 |
[30] |
Oh CD, Lu Y, Liang SD, Mori-Akiyama Y, Chen D, de Crombrugghe B, Yasuda H. SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS One, 2014, 9(9): e107577.
doi: 10.1371/journal.pone.0107577 |
[31] |
Wang WG, Song B, Anbarchian T, Shirazyan A, Sadik JE, Lyons KM. Smad2 and Smad3 regulate chondrocyte proliferation and differentiation in the growth plate. PLoS Genet, 2016, 12(10): e1006352.
doi: 10.1371/journal.pgen.1006352 |
[32] | Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol, 2016, 134: 97-138. |
[33] |
Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H, Pavan WJ. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol, 2001, 237(2): 245-257.
pmid: 11543611 |
[34] |
Seberg HE, Van Otterloo E, Loftus SK, Liu H, Bonde G, Sompallae R, Gildea DE, Santana JF, Manak JR, Pavan WJ, Williams T, Cornell RA. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet, 2017, 13(3): e1006636.
doi: 10.1371/journal.pgen.1006636 |
[35] |
Trainor PA, Krumlauf R. Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol, 2001, 13(6): 698-705.
pmid: 11698185 |
[36] |
Panganiban G, Rubenstein JL. Developmental functions of the Distal-less/Dlx homeobox genes. Development, 2002, 129(19): 4371-4386.
doi: 10.1242/dev.129.19.4371 pmid: 12223397 |
[37] |
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development, 2010, 137(16): 2605-2621.
doi: 10.1242/dev.040048 pmid: 20663816 |
[38] |
Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R. A distinct Hox code for the branchial region of the vertebrate head. Nature, 1991, 353(6347): 861-864.
doi: 10.1038/353861a0 |
[39] |
Santagati F, Minoux M, Ren SY, Rijli FM. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Development, 2005, 132(22): 4927-4936.
pmid: 16221728 |
[40] |
Depew MJ, Simpson CA, Morasso M, Rubenstein JLR. Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat, 2005, 207(5): 501-561.
pmid: 16313391 |
[41] |
Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev, 2002, 16(9): 1089-1101.
doi: 10.1101/gad.988402 |
[42] |
Qiu M, Bulfone A, Ghattas I, Meneses JJ, Christensen L, Sharpe PT, Presley R, Pedersen RA, Rubenstein JL. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol, 1997, 185(2): 165-184.
doi: 10.1006/dbio.1997.8556 pmid: 9187081 |
[43] |
Dai JW, Kuang Y, Fang B, Gong H, Lu SY, Mou ZF, Sun H, Dong YF, Lu JT, Zhang WB, Zhang JF, Wang ZG, Wang XD, Shen GF. The effect of overexpression of Dlx2 on the migration, proliferation and osteogenic differentiation of cranial neural crest stem cells. Biomaterials, 2013, 34(8): 1898-1910.
doi: 10.1016/j.biomaterials.2012.11.051 pmid: 23246068 |
[44] |
Shimizu M, Narboux-Nême N, Gitton Y, de Lombares C, Fontaine A, Alfama G, Kitazawa T, Kawamura Y, Heude E, Marshall L, Higashiyama H, Wada Y, Kurihara Y, Kurihara H, Levi G. Probing the origin of matching functional jaws: roles of Dlx5/6 in cranial neural crest cells. Sci Rep, 2018, 8(1): 14975.
doi: 10.1038/s41598-018-33207-2 pmid: 30297736 |
[45] |
Keuls RA, Parchem RJ. Single-Cell Multiomic approaches reveal diverse labeling of the nervous system by common Cre-drivers. Front Cell Neurosci, 2021, 15: 648570.
doi: 10.3389/fncel.2021.648570 |
[46] |
Cao JY, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J. A human cell atlas of fetal gene expression. Science, 2020, 370(6518): eaba7721.
doi: 10.1126/science.aba7721 |
[47] |
Zhang K, Hocker JD, Miller M, Hou XM, Chiou J, Poirion OB, Qiu YJ, Li YE, Gaulton KJ, Wang A, Preissl S, Ren B. A single-cell atlas of chromatin accessibility in the human genome. Cell, 2021, 184(24): 5985-6001.e5919.
doi: 10.1016/j.cell.2021.10.024 pmid: 34774128 |
[48] |
Fabian P, Tseng K-C, Thiruppathy M, Arata C, Chen H-J, Smeeton J, Nelson N, Crump JG. Lifelong single-cell profiling of cranial neural crest diversification in zebrafish. Nat Commun, 2022, 13(1): 13.
doi: 10.1038/s41467-021-27594-w pmid: 35013168 |
[49] |
Tatarakis D, Cang ZX, Wu XJ, Sharma PP, Karikomi M, MacLean AL, Nie Q, Schilling TF. Single-cell transcriptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development. Cell Rep, 2021, 37(12): 110140.
doi: 10.1016/j.celrep.2021.110140 |
[50] |
Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, Klein AM. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science, 2018, 360(6392): eaar5780.
doi: 10.1126/science.aar5780 |
[51] |
Lignell A, Kerosuo L, Streichan SJ, Cai L, Bronner ME. Identification of a neural crest stem cell niche by spatial genomic analysis. Nat Commun, 2017, 8(1): 1830.
doi: 10.1038/s41467-017-01561-w pmid: 29184067 |
[52] |
Williams RM, Candido-Ferreira I, Repapi E, Gavriouchkina D, Senanayake U, Ling ITC, Telenius J, Taylor S, Hughes J, Sauka-Spengler T. Reconstruction of the global neural crest gene regulatory network in vivo. Dev Cell, 2019, 51(2): 255-276.e257.
doi: S1534-5807(19)30812-3 pmid: 31639368 |
[53] |
Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian XY, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 2019, 364(6444): eaas9536.
doi: 10.1126/science.aas9536 |
[54] |
Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat Rev Genet, 2018, 19(2): 110-124.
doi: 10.1038/nrg.2017.101 pmid: 29225335 |
[55] |
Gratten J, Wray NR, Keller MC, Visscher PM. Large- scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci, 2014, 17(6): 782-790.
doi: 10.1038/nn.3708 pmid: 24866044 |
[56] |
Chang M, He L, Cai L. An overview of genome-wide association studies. Methods Mol Biol, 2018, 1754: 97-108.
doi: 10.1007/978-1-4939-7717-8_6 pmid: 29536439 |
[57] |
Claes P, Roosenboom J, White JD, Swigut T, Sero D, Li J, Lee MK, Zaidi A, Mattern BC, Liebowitz C, Pearson L, González T, Leslie EJ, Carlson JC, Orlova E, Suetens P, Vandermeulen D, Feingold E, Marazita ML, Shaffer JR, Wysocka J, Shriver MD, Weinberg SM. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat Genet, 2018, 50(3): 414-423.
doi: 10.1038/s41588-018-0057-4 pmid: 29459680 |
[58] |
White JD, Ortega-Castrillon A, Matthews H, Zaidi AA, Ekrami O, Snyders J, Fan Y, Penington T, Van Dongen S, Shriver MD, Claes P. MeshMonk: open-source large- scale intensive 3D phenotyping. Sci Rep, 2019, 9(1): 6085.
doi: 10.1038/s41598-019-42533-y |
[59] |
Liu F, van der Lijn F, Schurmann C, Zhu G, Chakravarty MM, Hysi PG, Wollstein A, Lao O, de Bruijne M, Ikram MA, van der Lugt A, Rivadeneira F, Uitterlinden AG, Hofman A, Niessen WJ, Homuth G, de Zubicaray G, McMahon KL, Thompson PM, Daboul A, Puls R, Hegenscheid K, Bevan L, Pausova Z, Medland SE, Montgomery GW, Wright MJ, Wicking C, Boehringer S, Spector TD, Paus T, Martin NG, Biffar R, Kayser M. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet, 2012, 8(9): e1002932.
doi: 10.1371/journal.pgen.1002932 |
[60] |
Paternoster L, Zhurov AI, Toma AM, Kemp JP, St Pourcain B, Timpson NJ, McMahon G, McArdle W, Ring SM, Smith GD, Richmond S, Evans DM. Genome- wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet, 2012, 90(3): 478-485.
doi: 10.1016/j.ajhg.2011.12.021 pmid: 22341974 |
[61] |
Shaffer JR, Orlova E, Lee MK, Leslie EJ, Raffensperger ZD, Heike CL, Cunningham ML, Hecht JT, Kau CH, Nidey NL, Moreno LM, Wehby GL, Murray JC, Laurie CA, Laurie CC, Cole J, Ferrara T, Santorico S, Klein O, Mio W, Feingold E, Hallgrimsson B, Spritz RA, Marazita ML, Weinberg SM. Genome-wide association study reveals multiple loci influencing normal human facial morphology. PLoS Genet, 2016, 12(8): e1006149.
doi: 10.1371/journal.pgen.1006149 |
[62] |
Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M, Mendoza-Revilla J, Camilo Chacón-Duque J, Acuña- Alonzo V, Jaramillo C, Arias W, Lozano RB, Pérez GM, Gómez-Valdés J, Villamil-Ramírez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Cheeseman M, Rosique J, Bedoya G, Rothhammer F, Headon D, González-José R, Balding D, Ruiz-Linares A. A genome- wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat Commun, 2016; 7: 11616.
doi: 10.1038/ncomms11616 |
[63] |
Qiao L, Yang YJ, Fu PC, Hu SL, Zhou H, Peng SN, Tan JZ, Lu Y, Lou HY, Lu DS, Wu SJ, Guo J, Jin L, Guan YQ, Wang SJ, Xu SH, Tang K. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. J Genet Genomics, 2018, 45(8): 419-432.
doi: S1673-8527(18)30148-6 pmid: 30174134 |
[64] |
Cha S, Lim JE, Park AY, Do JH, Lee SW, Shin C, Cho NH, Kang JO, Nam JM, Kim JS, Woo KM, Lee SH, Kim JY, Oh B. Identification of five novel genetic loci related to facial morphology by genome-wide association studies. BMC Genomics, 2018, 19(1): 481.
doi: 10.1186/s12864-018-4865-9 pmid: 29921221 |
[65] |
Xiong ZY, Dankova G, Howe LJ, Lee MK, Hysi PG, de Jong MA, Zhu G, Adhikari K, Li D, Li Y, Pan B, Feingold E, Marazita ML, Shaffer JR, McAloney K, Xu SH, Jin L, Wang SJ, de Vrij FM, Lendemeijer B, Richmond S, Zhurov A, Lewis S, Sharp GC, Paternoster L, Thompson H, Gonzalez-Jose R, Bortolini MC, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Uitterlinden AG, Ikram MA, Wolvius E, Kushner SA, Nijsten TE, Palstra RT, Boehringer S, Medland SE, Tang K, Ruiz-Linares A, Martin NG, Spector TD, Stergiakouli E, Weinberg SM, Liu F, Kayser M, International Visible Trait Genetics C. Novel genetic loci affecting facial shape variation in humans. eLife, 2019, 8: e49898.
doi: 10.7554/eLife.49898 |
[66] |
Li Y, Zhao WT, Li D, Tao XM, Xiong ZY, Liu J, Zhang W, Ji AQ, Tang K, Liu F, Li C. EDAR, LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population. Hum Genet, 2019, 138(6): 681-689.
doi: 10.1007/s00439-019-02023-7 pmid: 31025105 |
[67] |
Wu W, Zhai GY, Xu ZJ, Hou B, Liu DH, Liu TY, Liu W, Ren F. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum Genet, 2019, 138(6): 601-611.
doi: 10.1007/s00439-019-02008-6 pmid: 30968251 |
[68] |
Bonfante B, Faux P, Navarro N, Mendoza-Revilla J, Dubied M, Montillot C, Wentworth E, Poloni L, Varón-González C, Jones P, Xiong ZY, Fuentes-Guajardo M, Palmal S, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo- Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Liu F, Weinberg SM, Shaffer JR, Stergiakouli E, Howe LJ, Hysi PG, Spector TD, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Thauvin-Robinet C, Faivre L, Costedoat C, Balding D, Cox T, Kayser M, Duplomb L, Yalcin B, Cotney J, Adhikari K, Ruiz-Linares A. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation. Sci Adv, 2021, 7(6): eabc6160.
doi: 10.1126/sciadv.abc6160 |
[69] |
Lee MK, Shaffer JR, Leslie EJ, Orlova E, Carlson JC, Feingold E, Marazita ML, Weinberg SM.Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2. PLoS One, 2017, 12(4): e0176566.
doi: 10.1371/journal.pone.0176566 |
[70] |
Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet, 2016, 48(7): 709-717.
doi: 10.1038/ng.3570 pmid: 27182965 |
[71] |
Cole JB, Manyama M, Kimwaga E, Mathayo J, Larson JR, Liberton DK, Lukowiak K, Ferrara TM, Riccardi SL, Li M, Mio W, Prochazkova M, Williams T, Li H, Jones KL, Klein OD, Santorico SA, Hallgrimsson B, Spritz RA. Genomewide association study of African children identifies association of SCHIP1 and PDE8A with facial size and shape. PLoS Genet, 2016, 12(8): e1006174.
doi: 10.1371/journal.pgen.1006174 |
[72] | Crouch DJM, Winney B, Koppen WP, Christmas WJ, Hutnik K, Day T, Meena D, Boumertit A, Hysi P, Nessa A, Spector TD, Kittler J, Bodmer WF. Genetics of the human face: Identification of large-effect single gene variants. Proc Natl Acad Sci USA, 2018, 115(4): E676-E685. |
[73] |
Huang Y, Li D, Qiao L, Liu Y, Peng QQ, Wu SJ, Zhang MF, Yang YJ, Tan JZ, Xu SH, Jin L, Wang SJ, Tang K, Grünewald S. A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese. J Genet Genomics, 2021, 48(3): 198-207.
doi: 10.1016/j.jgg.2020.10.004 pmid: 33593615 |
[74] |
Zhang MF, Wu SJ, Du SY, Qian W, Chen JY, Qiao L, Yang YJ, Tan JZ, Yuan ZY, Peng QQ, Liu Y, Navarro N, Tang K, Ruiz-Linares A, Wang JC, Claes P, Jin L, Li JR, Wang SJ. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat Genet, 2022, 54(4): 403-411.
doi: 10.1038/s41588-022-01038-7 pmid: 35393595 |
[75] |
Park JH, Yamaguchi T, Watanabe C, Kawaguchi A, Haneji K, Takeda M, Kim YI, Tomoyasu Y, Watanabe M, Oota H, Hanihara T, Ishida H, Maki K, Park SB, Kimura R. Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. J Hum Genet, 2012, 57(8): 508-514.
doi: 10.1038/jhg.2012.60 |
[76] |
Adhikari K, Reales G, Smith AJP, Konka E, Palmen J, Quinto-Sanchez M, Acuña-Alonzo V, Jaramillo C, Arias W, Fuentes M, Pizarro M, Barquera Lozano R, Macín Pérez G, Gómez-Valdés J, Villamil-Ramírez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, Calderón R, Rosique J, Cheeseman M, Bhutta MF, Humphries SE, Gonzalez- José R, Headon D, Balding D, Ruiz-Linares A. A genome-wide association study identifies multiple loci for variation in human ear morphology. Nat Commun, 2015, 6: 7500.
doi: 10.1038/ncomms8500 pmid: 26105758 |
[77] |
Morgan MD, Pairo-Castineira E, Rawlik K, Canela- Xandri O, Rees J, Sims D, Tenesa A, Jackson IJ. Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nature Communications, 2018, 9(1): 5271.
doi: 10.1038/s41467-018-07691-z pmid: 30531825 |
[78] |
Jordan B. [Genes for faces]. Med Sci (Paris), 2021, 37(3): 300-303.
doi: 10.1051/medsci/2021008 pmid: 33739281 |
[79] |
Twigg SRF, Wilkie AOM. New insights into craniofacial malformations. Hum Mol Genet, 2015, 24(R1): R50-R59.
doi: 10.1093/hmg/ddv228 |
[80] |
Bartzela TN, Carels C, Maltha JC. Update on 13 syndromes affecting craniofacial and dental structures. Front Physiol, 2017, 8: 1038.
doi: 10.3389/fphys.2017.01038 pmid: 29311971 |
[81] | Ye XQ, Ahmed MK. Genetic factors responsible for cleft lip and palate. In: Fayyaz GQ, ed. Surgical Atlas of Cleft Palate and Palatal Fistulae. Singapore: Springer Singapore, 2020: 1-14. |
[82] |
Askarian S, Gholami M, Khalili-Tanha G, Tehrani NC, Joudi M, Khazaei M, Ferns GA, Hassanian SM, Avan A, Joodi M. The genetic factors contributing to the risk of cleft lip-cleft palate and their clinical utility. Oral Maxillofac Surg, 2022: doi: 10.1007/s10006-10022-01052-10003.
doi: 10.1007/s10006-10022-01052-10003 |
[83] |
Atukorala ADS, Ratnayake RK. Cellular and molecular mechanisms in the development of a cleft lip and/or cleft palate; insights from zebrafish (Danio rerio). Anat Rec (Hoboken), 2021, 304(8): 1650-1660.
doi: 10.1002/ar.24547 |
[84] |
Li J, Rodriguez G, Han X, Janečková E, Kahng S, Song B, Chai Y. Regulatory mechanisms of doft palate development and malformations. J Dent Res, 2019, 98(9): 959-967.
doi: 10.1177/0022034519851786 pmid: 31150594 |
[85] |
Brandstetter KA, Patel KG. Craniofacial microsomia. Facial Plast Surg Clin North Am, 2016, 24(4): 495-515.
doi: 10.1016/j.fsc.2016.06.006 |
[86] |
Werler MM, Sheehan JE, Hayes C, Mitchell AA, Mulliken JB. Vasoactive exposures, vascular events, and hemifacial microsomia. Birth Defects Res A Clin Mol Teratol, 2004, 70(6): 389-395.
doi: 10.1002/bdra.20022 |
[87] | Poswillo D. Hemorrhage in development of the face. Birth Defects Orig Artic Ser, 1975, 11(7): 61-81. |
[88] |
Wang R, Martínez-Frías ML, Graham JM, Jr. Infants of diabetic mothers are at increased risk for the oculo- auriculo-vertebral sequence: a case-based and case- control approach. J Pediatr, 2002, 141(5): 611-617.
doi: 10.1067/mpd.2002.128891 |
[89] |
Zhang YB, Hu JT, Zhang J, Zhou X, Li X, Gu CH, Liu T, Xie YC, Liu JQ, Gu ML, Wang PP, Wu TT, Qian J, Wang Y, Dong XQ, Yu J, Zhang QG. Genome-wide association study identifies multiple susceptibility loci for craniofacial microsomia. Nat Commun, 2016, 7: 10605.
doi: 10.1038/ncomms10605 |
[90] |
Callier P, Faivre L, Thauvin-Robinet C, Marle N, Mosca AL, D'Athis P, Guy J, Masurel-Paulet A, Joly L, Guiraud S, Teyssier JR, Huet F, Mugneret F. Array-CGH in a series of 30 patients with mental retardation, dysmorphic features, and congenital malformations detected an interstitial 1p22.2-p31.1 deletion in a patient with features overlapping the Goldenhar syndrome. Am J Med Genet A, 2008, 146a(16): 2109-2115.
doi: 10.1002/ajmg.a.32447 pmid: 18629884 |
[91] |
Ala-Mello S, Siggberg L, Knuutila S, von Koskull H, Taskinen M, Peippo M. Further evidence for a relationship between the 5p15 chromosome region and the oculoauriculovertebral anomaly. Am J Med Genet A, 2008, 146A(19): 2490-2494.
doi: 10.1002/ajmg.a.32479 pmid: 18792983 |
[92] |
Zielinski D, Markus B, Sheikh M, Gymrek M, Chu C, Zaks M, Srinivasan B, Hoffman JD, Aizenbud D, Erlich Y. OTX2 duplication is implicated in hemifacial microsomia. PLoS One, 2014, 9(5): e96788.
doi: 10.1371/journal.pone.0096788 |
[93] |
Ballesta-Martínez MJ, López-González V, Dulcet LA, Rodríguez-Santiago B, Garcia-Miñaúr S, Guillen- Navarro E. Autosomal dominant oculoauriculovertebral spectrum and 14q23.1 microduplication. Am J Med Genet A, 2013, 161A(8): 2030-2035.
doi: 10.1002/ajmg.a.36007 pmid: 23794319 |
[94] |
Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S. Mouse Otx 2 functions in the formation and patterning of rostral head. Genes Dev, 1995, 9(21): 2646-2658.
doi: 10.1101/gad.9.21.2646 |
[95] |
Bragagnolo S, Colovati MES, Souza MZ, Dantas AG, Melaragno MI, Perez AB. Clinical and cytogenomic findings in OAV spectrum. Am J Med Genet A, 2018, 176(3): 638-648.
doi: 10.1002/ajmg.a.38576 pmid: 29368383 |
[96] |
Chen XJ, Xu F, Liu FT, Aung ZM, Chen W, Han WQ, Yang XX, Zhang Y, Chai G, Zhang RH. Whole-exome sequencing for monozygotic twins discordant for hemifacial microsomia. J Craniomaxillofac Surg, 2018, 46(5): 802-807.
doi: S1010-5182(18)30047-7 pmid: 29551253 |
[97] |
Lopez E, Berenguer M, Tingaud-Sequeira A, Marlin S, Toutain A, Denoyelle F, Picard A, Charron S, Mathieu G, de Belvalet H, Arveiler B, Babin PJ, Lacombe D, Rooryck C. Mutations in MYT1, encoding the myelin transcription factor 1, are a rare cause of OAVS. J Med Genet, 2016, 53(11): 752-760.
doi: 10.1136/jmedgenet-2016-103774 |
[98] |
Wang YB, Ping L, Luan XD, Chen YS, Fan XM, Li LY, Liu YP, Wang P, Zhang SY, Zhang B, Chen XW. A mutation in VWA1, encoding von willebrand factor a domain-containing protein 1, is associated with hemifacial microsomia. Front Cell Dev Biol, 2020, 8: 571004.
doi: 10.3389/fcell.2020.571004 |
[99] |
Timberlake AT, Griffin C, Heike CL, Hing AV, Cunningham ML, Chitayat D, Davis MR, Doust SJ, Drake AF, Duenas-Roque MM, Goldblatt J, Gustafson JA, Hurtado-Villa P, Johns A, Karp N, Laing NG, Magee L, University of Washington Center for Mendelian Genomics, Mullegama SV, Pachajoa H, Porras-Hurtado GL, Schnur RE, Slee J, Singer SL, Staffenberg DA, Timms AE, Wise CA, Zarante I, Saint-Jeannet J-P, Luquetti DV. Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nature Communications, 2021, 12(1): 4680.
doi: 10.1038/s41467-021-24852-9 pmid: 34344887 |
[100] |
Magaletta ME, Lobo M, Kernfeld EM, Aliee H, Huey JD, Parsons TJ, Theis FJ, Maehr R. Integration of single-cell transcriptomes and chromatin landscapes reveals regulatory programs driving pharyngeal organ development. Nat Commun, 2022, 13(1): 457.
doi: 10.1038/s41467-022-28067-4 pmid: 35075189 |
[1] | 刘文兵, 刘丹, 闫进, 刘欣, 王前飞. 重症新型冠状病毒肺炎患者遗传易感性研究进展[J]. 遗传, 2022, 44(8): 672-681. |
[2] | 蒋卓远, 查艳, 石小峰, 张永彪. 神经嵴细胞和神经嵴病及其致病机制的研究进展[J]. 遗传, 2022, 44(2): 117-133. |
[3] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[4] | 钱国清. 慢性阻塞性肺疾病全基因组关联研究进展[J]. 遗传, 2020, 42(9): 832-846. |
[5] | 黄莹,刘琪,池连江,石承民,吴祯,胡敏,石宏,陈华. BIG-Annotator:基因组测序数据高效功能注释及其在遗传诊断中的应用[J]. 遗传, 2018, 40(11): 1015-1023. |
[6] | 常飞, 邹文超, 高芳銮, 沈建国, 詹家绥. 不同寄主来源的马铃薯Y病毒群体遗传结构的比较分析[J]. 遗传, 2015, 37(3): 292-301. |
[7] | 余莉莉,董琬如,陈明会,孔祥阳. 性腺母细胞瘤的分子遗传机制研究进展[J]. 遗传, 2015, 37(11): 1105-1115. |
[8] | 江静, 钱前, 马伯军,高振宇. 表观遗传变异及其在作物改良中的应用[J]. 遗传, 2014, 36(5): 469-475. |
[9] | 汤晓丽 邓立彬 林加日 张伟龙 刘双梅 魏懿 梅普明 汪雁 梁尚栋. 固醇调节元件结合蛋白1及其靶基因网络[J]. 遗传, 2013, 35(5): 607-615. |
[10] | 王燕,谢辉,陈利萍. 植物嫁接诱导的遗传变异机理的研究进展[J]. 遗传, 2011, 33(6): 585-590. |
[11] | 三森·健葩彤,查芭·健葩彤. 热带、亚热带玉米育种素材的遗传改良[J]. 遗传, 2011, 33(12): 1380-1392. |
[12] | 李英慧,袁翠平,张辰,李伟,南海洋,常汝镇,邱丽娟. 基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析[J]. 遗传, 2009, 31(12): 1259-1264. |
[13] | 王长忠,梁宏伟,邹桂伟,罗相忠,李忠,田华,呼光富. 长江中上游两个鲢群体遗传变异的微卫星分析[J]. 遗传, 2008, 30(10): 1341-1348. |
[14] | 王正华,刘齐军,朱云平. 基因调控网络的模块化组织研究[J]. 遗传, 2008, 30(1): 20-27. |
[15] | 吴圣龙,包文斌,鞠慧萍,朱国强,李碧春,陈国宏. 猪a1-岩藻糖转移酶基因(FUT1) M857位点遗传变异分析[J]. 遗传, 2007, 29(9): 1071-1071―1076. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: