遗传 ›› 2023, Vol. 45 ›› Issue (9): 801-812.doi: 10.16288/j.yczz.23-083
曾瑞儿(), 耿庆辉, 高恒宽, 潘晴晴, 陈婷婷, 陈勇, 张雷()
收稿日期:
2023-03-30
修回日期:
2023-06-07
出版日期:
2023-09-20
发布日期:
2023-07-11
通讯作者:
张雷
E-mail:ruierzeng@163.com;zhanglei@scau.edu.cn
作者简介:
曾瑞儿,博士研究生,专业方向:花生分子遗传。E-mail: 基金资助:
Ruier Zeng(), Qinghui Geng, Hengkuan Gao, Qingqing Pan, Tingting Chen, Yong Chen, Lei Zhang()
Received:
2023-03-30
Revised:
2023-06-07
Online:
2023-09-20
Published:
2023-07-11
Contact:
Lei Zhang
E-mail:ruierzeng@163.com;zhanglei@scau.edu.cn
Supported by:
摘要:
氮是花生生长发育所需的大量元素,共生结瘤固氮是花生获取氮素的主要方式之一。花生共生结瘤固氮涉及复杂的调控机理,揭示氮素对根瘤固氮的调控机制对发挥生物固氮潜力具有重要意义。本文系统总结了花生根瘤形成的“裂隙侵染”机制、花生共生结瘤和数量调控的机制以及氮素影响花生结瘤的调控机制。目前,氮素影响慢生根瘤菌与花生互作进而调控结瘤的分子机理尚不清楚,因此未来的研究重点应该集中在氮素影响花生慢生根瘤菌与花生的信号交流、根瘤数调节和营养交换机制等方面,为提高花生结瘤固氮效率和产量、减少化学氮肥施用提供理论基础。
曾瑞儿, 耿庆辉, 高恒宽, 潘晴晴, 陈婷婷, 陈勇, 张雷. 氮素调控花生共生结瘤的机制研究进展[J]. 遗传, 2023, 45(9): 801-812.
Ruier Zeng, Qinghui Geng, Hengkuan Gao, Qingqing Pan, Tingting Chen, Yong Chen, Lei Zhang. Mechanism of symbiotic nodulation between nitrogen and peanut[J]. Hereditas(Beijing), 2023, 45(9): 801-812.
[1] |
Lavin M, Herendeen PS, Wojciechowski MF. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol, 2005, 54(4): 575-594.
doi: 10.1080/10635150590947131 pmid: 16085576 |
[2] |
Sprent JI. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol, 2007, 174(1): 11-25.
doi: 10.1111/j.1469-8137.2007.02015.x pmid: 17335493 |
[3] |
Garg N, Renseigné N. Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev, 2007, 27(1): 59-68.
doi: 10.1051/agro:2006030 |
[4] | Liao BS. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sciences, 2020, 42(2): 161-166. |
廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42(2): 161-166. | |
[5] | Wu ZF, Chen DX, Zheng YM, Wang CB, Sun XW, Li XD, Wang XX, Shi CR, Feng H, Yu TY. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sciences, 2016, 38(2): 207-213. |
吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38(2): 207-213. | |
[6] |
Yang J, Lan LY, Jin Y, Yu N, Wang D, Wang ET. Mechanisms underlying legume-rhizobium symbioses. J Integr Plant Biol, 2022, 64(2): 244-267.
doi: 10.1111/jipb.v64.2 |
[7] |
Bosse MA, Da Silva MB, De Oliveira NGRM, de Araujo MA, Rodrigues C, de Azevedo JP, Dos Reis AR,. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant Physiol Bioch, 2021, 166: 512-521.
doi: 10.1016/j.plaphy.2021.06.007 |
[8] |
Liu Y, Lin Y, Guan N, Song YT, Li YG, Xie XN. A lipopolysaccharide synthesis gene rfaD from Mesorhizobium huakuii is involved in nodule development and symbiotic nitrogen fixation. Microorganisms, 2023, 11(1): 59.
doi: 10.3390/microorganisms11010059 |
[9] |
Taurian T, Ibanez F, Fabra A, Aguilar OM. Genetic diversity of rhizobia nodulating Arachis hypogaea L. in central argentinean soils. Plant Soil, 2006, 282(1-2): 41-52.
doi: 10.1007/s11104-005-5314-5 |
[10] | Chen WF, Meng XF, Jiao YS, Tian CF, Sui XH, Jiao J, Wang ET, Ma SJ. Bacteroid development, transcriptome, and symbiotic nitrogen-fixing comparison of Bradyrhizobium arachidis in nodules of peanut (Arachis hypogaea) and medicinal legume sophora flavescens. Microbiol Spectr, 2023, 11(1): 1-14. |
[11] |
Li YH, Wang R, Zhang XX, Young JPW, Wang ET, Sui XH, Chen WX. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol, 2015, 65(12): 4655-4661.
doi: 10.1099/ijsem.0.000629 |
[12] |
Li YH, Wang R, Sui XH, Wang ET, Zhang XX, Tian CF, Chen WF, Chen WX. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol, 2019, 42(5): 126002.
doi: 10.1016/j.syapm.2019.126002 |
[13] |
Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D, Nouwen N, Goormachtig S, Giraud E. Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: the nod-dependent versus the nod-independent symbiotic interaction. Mol Plant Microbe Interact, 2011, 24(11): 1359-1371.
doi: 10.1094/MPMI-04-11-0093 |
[14] |
Broughton WJ, Jabbouri S, Perret X. Keys to symbiotic harmony. J Bacteriol, 2000, 182(20): 5641-5652.
doi: 10.1128/JB.182.20.5641-5652.2000 pmid: 11004160 |
[15] |
Sprent JI, James EK. Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol, 2007, 144(2): 575-581.
pmid: 17556520 |
[16] | Ibáñez F, Wall L, Fabra A. Starting points in plant- bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. J Exp Bot, 2017, 68(8): 1905-1918. |
[17] |
Chen JY, Gu J, Wang ET, Ma XX, Kang ST, Huang LZ, Cao XP, Li LB, Wu YL. Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils. Syst Appl Microbiol, 2014, 37(7): 525-532.
doi: 10.1016/j.syapm.2014.05.004 |
[18] |
Fernández-Luqueño F, Dendooven L, Munive A, Corlay- Chee L, Serrano-Covarrubias LM, Espinosa-Victoria D. Micro-morphology of common bean (Phaseolus vulgaris L.) nodules undergoing senescence. Acta Physiol Plant, 2008, 30(4): 545-552.
doi: 10.1007/s11738-008-0153-7 |
[19] |
Siddique AB, Bal AK. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies. Plant Physiol, 1991, 95(3): 896-899.
doi: 10.1104/pp.95.3.896 pmid: 16668069 |
[20] | Diao RN, Yang S, Zhang JL, Wang JG, Peng ZY, Yu XX, Li XG, Wan SB. The mechanisms of calcium regulation on peanut nodulation and nitrogen fixation analyzed by transcriptomes and metabonomics. J Peanut Science, 2022, 51(4): 1-7. |
刁瑞宁, 杨莎, 张佳蕾, 王建国, 彭振英, 于晓霞, 李新国, 万书波. 转录组和代谢组分析钙调控花生结瘤固氮的机理. 花生学报, 2022, 51(4): 1-7. | |
[21] |
Huang L, Chen WG, Li WT, Yu BL, Guo JB, Zhou XJ, Luo HY, Liu N, Lei Y, Liao BS, Jiang HF. Identification of major QTLs for nodule formation in peanut. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
doi: 10.3724/SP.J.1006.2023.24184 |
黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位. 作物学报, 2023, 49(8): 2097-2104.
doi: 10.3724/SP.J.1006.2023.24184 |
|
[22] |
Zheng YM, Du LT, Wang CX, Wu ZF, Sun XW, Yu TY, Shen F, Wang CB. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30(3): 961-968.
doi: 10.13287/j.1001-9332.201903.019 |
郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30(3): 961-968.
doi: 10.13287/j.1001-9332.201903.019 |
|
[23] |
Yano K, Yoshida S, Müeller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA, 2008, 105(51): 20540-20545.
doi: 10.1073/pnas.0806858105 pmid: 19074278 |
[24] |
Singh S, Katzer K, Lambert J, Cerri M, Parniske M. CYCLOPS, a DNA-Binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe, 2014, 15(2): 139-152.
doi: 10.1016/j.chom.2014.01.011 pmid: 24528861 |
[25] |
Cerri MR, Wang QH, Stolz P, Folgmann J, Frances L, Katzer K, Li XL, Heckmann AB, Wang TL, Downie JA, Klingl A, de Carvalho-Niebel F, Xie F, Parniske M.The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in Lotus japonicus. New Phytol, 2017, 215(1): 323-337.
doi: 10.1111/nph.2017.215.issue-1 |
[26] |
Oldroyd GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol, 2013, 11(4): 252-263.
doi: 10.1038/nrmicro2990 pmid: 23493145 |
[27] |
Zipfel C, Oldroyd GED. Plant signalling in symbiosis and immunity. Nature, 2017, 543(7645): 328-336.
doi: 10.1038/nature22009 |
[28] |
Nishimura R, Ohmori M, Fujita H, Kawaguchi M. A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proc Natl Acad Sci USA, 2002, 99(23): 15206-15210.
pmid: 12397181 |
[29] |
Ibáñez F, Fabra A. Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis. Plant Biol (Stuttg), 2011, 13(5): 794-800.
doi: 10.1111/plb.2011.13.issue-5 |
[30] | Guha S, Sarkar M, Ganguly P, Uddin MR, Mandal S, DasGupta M. Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped fields of Bengal Basin, India. Environ Microbiol, 2016, 8(8): 2575-2590. |
[31] |
Ibáñez F, Angelini J, Soledad Figueredo M, Muñoz V, Laura Tonelli M, Fabra A. Sequence and expression analysis of putative Arachis hypogaea (peanut) nod factor perception proteins. J Plant Res, 2015, 128(4): 709-718.
doi: 10.1007/s10265-015-0719-6 |
[32] |
Peng Z, Liu FX, Wang LP, Zhou H, Paudel D, Tan LB, Maku J, Gallo M, Wang JP. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.)nodulation. Sci Rep, 2017, 7: 40066.
doi: 10.1038/srep40066 pmid: 28059169 |
[33] | Madsen EB, Antolín-Llovera M, Grossmann C, Ye JY, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen ON, Stougaard J, Parniske M.Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J, 2010, 65(3): 404-417. |
[34] |
Saha S, Paul A, Herring L, Dutta A, Bhattacharya A, Samaddar S, Goshe MB, DasGupta M. Gatekeeper tyrosine phosphorylation of SYMRK is essential for synchronizing the epidermal and cortical responses in root nodule symbiosis. Plant Physiol, 2016, 171(1): 71-81.
doi: 10.1104/pp.15.01962 pmid: 26960732 |
[35] |
Sinharoy S, DasGupta M. RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis. Mol Plant Microbe Interact, 2009, 22(11): 1466-1475.
doi: 10.1094/MPMI-22-11-1466 |
[36] | Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibañez F, Wang JP, Guo BZ, Sudini HK, Gopalakrishnan S, DasGupta M, Varshney RK, Pandey MK. Molecular basis of root nodule symbiosis between Bradyrhizobium and 'Crack-Entry' legume groundnut (Arachis hypogaea L.). Plants(Basel), 2020, 9(2): 276. |
[37] |
Das DR, Horváth B, Kundu A, Kaló P, DasGupta M. Functional conservation of CYCLOPS in crack entry legume Arachis hypogaea. Plant Sci, 2019, 281: 232-241.
doi: S0168-9452(18)31097-5 pmid: 30824056 |
[38] | Chi JX, Xu FJ, Liu YY, Wan SB, Li GW. Progress in research on nodulation, nitrogen fixation and molecular regulation mechanism in Leguminosae. Shandong Agri Sciences, 2022, 54(3): 155-164. |
迟静娴, 徐方继, 刘译阳, 万书波, 李国卫. 豆科植物结瘤固氮及其分子调控机制的研究进展. 山东农业科学, 2022, 54(3): 155-164. | |
[39] |
Kosslak RM, Bohlool BB. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol, 1984, 75(1): 125-130.
doi: 10.1104/pp.75.1.125 pmid: 16663555 |
[40] |
Reid DE, Ferguson BJ, Gresshoff PM. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microbe Interact, 2011, 24(5): 606-618.
doi: 10.1094/MPMI-09-10-0207 |
[41] |
Ferguson BJ, Mens C, Hastwell AH, Zhang MB, Su HN, Jones CH, Chu XT, Gresshoff PM. Legume nodulation: the host controls the party. Plant Cell Environ, 2018, 42(1): 41-51.
doi: 10.1111/pce.v42.1 |
[42] |
Karmakar K, Kundu A, Rizvi AZ, Dubois E, Severac D, Czernic P, Cartieaux F, DasGupta M. Transcriptomic analysis with the progress of symbiosis in 'Crack-Entry' legume Arachis hypogaea highlights its contrast with 'Infection Thread' adapted legumes. Mol Plant Microbe Interact, 2019, 32(3): 271-285.
doi: 10.1094/MPMI-06-18-0174-R |
[43] |
Wang Y, Wang ZS, Amyot L, Tian LN, Xu ZQ, Gruber MY, Hannoufa A.Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. Mol Genet Genomics, 2015, 290(2): 471-484.
doi: 10.1007/s00438-014-0931-4 pmid: 25293935 |
[44] |
Huo XY, Schnabel E, Hughes K, Frugoli J. RNAi phenotypes and the localization of a protein : : GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul, 2006, 25(2): 156-165.
doi: 10.1007/s00344-005-0106-y |
[45] |
Cai ZM, Wang YN, Zhu L, Tian YP, Chen L, Sun ZX, Ullah I, Li X. GmTIR1/GmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation. New Phytol, 2017, 215(2): 672-686.
doi: 10.1111/nph.14632 pmid: 28598036 |
[46] |
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. J Integr Plant Biol, 2018, 60(8): 632-648.
doi: 10.1111/jipb.v60.8 |
[47] | Guinel FC. Ethylene, a hormone at the center-stage of nodulation. Front Plant Sci, 2016, 6: 1121. |
[48] |
Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K. Cytokinin: secret agent of symbiosis. Trends Plant Sci, 2008, 13(3): 115-120.
doi: 10.1016/j.tplants.2008.01.003 pmid: 18296104 |
[49] |
Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F.MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J, 2010, 65(4): 622-633.
doi: 10.1111/tpj.2011.65.issue-4 |
[50] |
Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 2007, 315(5808): 101-104.
doi: 10.1126/science.1132514 |
[51] |
Kundu A, DasGupta M.Silencing of putative cytokinin receptor histidine kinase1 inhibits both inception and differentiation of root nodules in Arachis hypogaea. Mol Plant Microbe Interact, 2017, 31(2): 187-199.
doi: 10.1094/MPMI-06-17-0144-R |
[52] |
Ng JLP, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U. Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell, 2015, 27(8): 2210-2226.
doi: 10.1105/tpc.15.00231 |
[53] |
Breakspear A, Liu CW, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen JQ, Oldroyd GED, Downie JA, Murray JD. The root hair "Infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell, 2014, 26(12): 4680-4701.
doi: 10.1105/tpc.114.133496 |
[54] |
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJN, Gouzy J, Frugier F, Gamas P. A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiol, 2016, 171(3): 2256-2276.
doi: 10.1104/pp.16.00711 |
[55] |
Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S.A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule- associated transcription factors of Lotus japonicus. Plant Physiol, 2008, 147(4): 2030-2040.
doi: 10.1104/pp.108.118141 pmid: 18567832 |
[56] |
Ding YD, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GED. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell, 2008, 20(10): 2681-2695.
doi: 10.1105/tpc.108.061739 pmid: 18931020 |
[57] |
Penmetsa R, Frugoli JA, Smith LS, Long SR, Cook DR. Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol, 2003, 131(3): 998-1008.
pmid: 12644652 |
[58] |
Penmetsa R, Cook D. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science, 1997, 275(5299): 527-530.
doi: 10.1126/science.275.5299.527 pmid: 8999796 |
[59] |
Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M. Gibberellin controls the nodulation signaling pathway in Lotus japonicus. Plant J, 2009, 58(2): 183-194.
doi: 10.1111/tpj.2009.58.issue-2 |
[60] |
Fonouni-Farde C, Kisiala A, Brault M, Emery RJN, Diet A, Frugier F. DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation. Plant Physiol, 2017, 175(4): 1795-1806.
doi: 10.1104/pp.17.00919 pmid: 29046420 |
[61] | Gao JP, Liang WJ, Jiang SY, Yan ZY, Zhou CN, Wang ET, Murray JD. NODULE INCEPTION activates gibberellin biosynthesis genes during rhizobial infection. New Phytol, 2023, 239(2): 459-465. |
[62] | Guo P, Wang JY, Shi XL, Ren JY, Chen C, Zhang P, Xiong HY, Zhang H, Zhao XH, Wang XG, Yu HQ, Jiang CJ. Effects of nitrogen application rate on nodule characteristics and nitrogen utilization in different peanut genotypes, J Shenyang Agri Univ, 2022, 53(4): 385-393. |
郭佩, 王佳艺, 史晓龙, 任婧瑶, 陈冲, 张萍, 熊焕烨, 张鹤, 赵新华, 王晓光, 于海秋, 蒋春姬. 施氮量对不同基因型花生结瘤特性及氮素利用的影响. 沈阳农业大学学报, 2022, 53(4): 385-393. | |
[63] |
Gan YB, Stulen I, van Keulen H, Kuiper PJC. Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g-1 root dry weight) and specific N2 fixation (N2 fixed g-1 root dry weight) in soybean. Plant Soil, 2004, 258(1-2): 281-292.
doi: 10.1023/B:PLSO.0000016558.32575.17 |
[64] |
Barbulova A, Rogato A, D'Apuzzo E, Omrane S, Chiurazzi M. Differential effects of combined N sources on early steps of the nod factor-dependent transduction pathway in Lotus japonicus. Mol Plant Microbe Interact, 2007, 20(8): 994-1003.
doi: 10.1094/MPMI-20-8-0994 |
[65] |
Zheng YM, Wang CX, Liu QM, Wu ZF, Wang CB, Sun XS, Zheng YP. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nuclear Agri Science, 2017, 31(12): 2418-2425.
doi: 10.11869/j.issn.100-8551.2017.12.2418 |
郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31(12): 2418-2425.
doi: 10.11869/j.issn.100-8551.2017.12.2418 |
|
[66] |
Yan J, Han XZ. Effect of soil inorganic N concentrations on the nodulation, N2 fixation and yield in soybean in a pot experiment. Agr Sci China, 2014, 47(10): 1929-1938.
doi: 10.3864/j.issn.0578-1752.2014.10.006 |
严君, 韩晓增. 盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响. 中国农业科学, 2014, 47(10): 1929-1938.
doi: 10.3864/j.issn.0578-1752.2014.10.006 |
|
[67] | Li XD, Wu AR, Zhang GY, Wan YS. Influence of N fertilizer on the nitrogenase activity (NA) in nodules and the nitrate reductase activity (NRA) in leaves of summer sowing peanut (Arachis hypogaea). J Shandong Agri Univ, 1995, 26(4): 496-502. |
李向东, 吴爱荣, 张高英, 万勇善. 夏花生施用氮肥对根瘤中固氮酶和叶片硝酸还原酶活性的影响. 山东农业大学学报, 1995, 26(4): 496-502. | |
[68] |
Yang LY, Wu Q, Liang HY, Yin L, Shen P. Integrated analyses of transcriptome and metabolome provides new insights into the primary and secondary metabolism in response to nitrogen deficiency and soil compaction stress in peanut roots. Front Plant Sci, 2022, 13: 948742.
doi: 10.3389/fpls.2022.948742 |
[69] | Liu ZY, Dong YM, Luo XY, Sun WX, Liu YY. Effect of starter-N plus top dressing N on dry matter accumulation and leaf productivity of soybean. J Northeast Agri Univ, 2013, 44(10): 6-10. |
刘志远, 董彦明, 罗翔宇, 孙文相, 刘元英. 启动氮加追氮对大豆干物质积累及叶生产力的影响. 东北农业大学学报, 2013, 44(10): 6-10. | |
[70] | Zheng YM, Shen P, Sun XW, Wu ZF, Yu TY, Feng H, Sun QQ, Wu JX, Wang CB, Wu Y. Quantifying the role of peanut root and root nodule in nitrogen absorption and fixation under four forms of N fertilizers. J Agric Food Res, 2022, 9(3): 100334. |
[71] |
Yamashita N, Tanabata S, Ohtake N, Sueyoshi K, Sato T, Higuchi K, Saito A, Ohyama T. Effects of different chemical forms of nitrogen on the quick and reversible inhibition of soybean nodule growth and nitrogen fixation activity. Front Plant Sci, 2019, 10: 131.
doi: 10.3389/fpls.2019.00131 pmid: 30838008 |
[72] | Qiao YF, Han XZ. Effects of long-term fertilization on root phenotype and nodulation of soybean. Soybean Sci, 2011, 30(1): 119-122. |
乔云发, 韩晓增. 长期定量施肥对大豆根系形态和根瘤性状的影响. 大豆科学, 2011, 30(1): 119-122. | |
[73] | Zhang X, Zhang XY, Zhang YT, Mao JW, Li GP, Zhao LJ. Effcets of nitrogen application rate on nodulation, nitrogen absorption and utilization of peanuts. J Peanut Science, 2012, 41(4): 12-17. |
张翔, 张新友, 张玉亭, 毛家伟, 李国平, 赵丽君. 氮用量对花生结瘤和氮素吸收利用的影响. 花生学报, 2012, 41(4): 12-17. | |
[74] |
Santos MA, Geraldi IO, Franco Garcia AA, Bortolatto N, Schiavon A, Hungria M. Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas, 2013, 150(2-3): 17-25.
doi: 10.1111/j.1601-5223.2013.02275.x pmid: 23865962 |
[75] |
Hwang S, Ray JD, Cregan PB, King CA, Davies MK, Purcell LC. Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L.). Euphytica, 2014, 195(3): 419-434.
doi: 10.1007/s10681-013-1005-0 |
[76] | Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425(6859): 585-592. |
[77] | Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003, 425(6958): 637-640. |
[78] |
Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420(6914): 422-426.
doi: 10.1038/nature01207 |
[79] |
Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi- Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M. HAR1 mediates systemic regulation of symbiotic organ development. Nature, 2002, 420(6894): 426-429.
doi: 10.1038/nature01231 |
[80] |
Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 2002, 417(6892): 959-962.
doi: 10.1038/nature00841 |
[81] |
Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA. The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol, 2011, 157(1): 328-340.
doi: 10.1104/pp.111.178756 pmid: 21742814 |
[82] |
Oldroyd GED, Long SR. Identification and characterization of Nodulation-Signaling Pathway 2, a gene of Medicago truncatula involved in Nod actor signaling. Plant Physiol, 2003, 131(3): 1027-1032.
pmid: 12644655 |
[83] |
Fang Y, Hirsch AM.Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic Alfalfa. Plant Physiol, 1998, 116(1): 53-68.
pmid: 9449836 |
[84] |
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 2003, 302(5645): 630-633.
doi: 10.1126/science.1090074 pmid: 12947035 |
[85] |
Schnabel E, Journet E, de Carvalho-Niebel F, Duc G, Frugoli J. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol, 2005, 58(6): 809-822.
doi: 10.1007/s11103-005-8102-y pmid: 16240175 |
[86] | Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB.A receptor kinase gene regulating symbiotic nodule development. Nature, 2002, 417(6892): 962-966. |
[87] |
Peng Z, Chen HQ, Tan LB, Shu HM, Varshney RK, Zhou ZK, Zhao ZF, Luo ZL, Chitikineni A, Wang LP, Maku J, López Y, Gallo M, Zhou H, Wang JP. Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. J Exp Bot, 2021, 72(4): 1104-1118.
doi: 10.1093/jxb/eraa505 pmid: 33130897 |
[88] |
Jin J, Watt M, Mathesius U. The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiol, 2012, 159(1): 489-500.
doi: 10.1104/pp.112.194993 |
[89] |
Nishida H, Suzaki T. Nitrate-mediated control of root nodule symbiosis. Curr Opin Plant Biol, 2018, 44: 129-136.
doi: S1369-5266(18)30010-4 pmid: 29684704 |
[90] |
Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun, 2013, 4: 1713.
doi: 10.1038/ncomms2650 pmid: 23591880 |
[91] |
Luo ZP, Lin JS, Zhu YL, Fu MD, Li XL, Xie F. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula. Plant Commun, 2021, 2(3): 100183.
doi: 10.1016/j.xplc.2021.100183 |
[92] |
McKay IA, Djordjevic MA. Production and excretion of nod metabolites by rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl Environ Microb, 1993, 59(10): 3385-3392.
doi: 10.1128/aem.59.10.3385-3392.1993 pmid: 16349071 |
[93] | Tian LB, Liu YY, Zhang JL, Li RC, Cui F, Wan SB, Li GW. Identification of peanut nodule inception and its response to nitrogen fertilizer. J Peanut Science, 2020, 49(3): 1-7. |
田丽彬, 刘译阳, 张佳蕾, 李荣冲, 崔凤, 万书波, 李国卫. 花生结瘤起始因子基因鉴定及其对氮肥的响应. 花生学报, 2020, 49(3): 1-7. | |
[94] |
Limpens E, Bisseling T. Signaling in symbiosis. Curr Opin Plant Biol, 2003, 6(4): 343-350.
pmid: 12873529 |
[95] |
Gao JP, Xu P, Wang MX, Zhang XW, Yang J, Zhou Y, Murray JD, Song CP, Wang ET. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Curr Biol, 2021, 31(16): 3538.
doi: 10.1016/j.cub.2021.06.011 |
[96] | Chen M.Research on the biochemical mechanism of the interaction between rhizobium NodD and plant flavonoidsd[Dissertation]. Huazhong Agricultural University, 2022. |
陈敏.根瘤菌 NodD 蛋白与植物类黄酮化合物互作的生化机制研究[学位论文]. 华中农业大学, 2022. | |
[97] |
Li S, Wu CB, Liu H, Lyu XC, Xiao FS, Zhao SH, Ma CM, Yan C, Liu ZL, Li HY, Wang XL, Gong ZP. Systemic regulation of nodule structure and assimilated carbon distribution by nitrate in soybean. Front Plant Sci, 2013, 14: 1101074.
doi: 10.3389/fpls.2023.1101074 |
[98] |
Wang CB, Zheng YM, Shen P, Zheng YP, Wu ZF, Sun XW, Yu TY, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J Integr Agric, 2016, 15(2): 432-439.
doi: 10.1016/S2095-3119(15)61079-6 |
[99] |
Li YY, Pan FX, Yao HY. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soil Sediment, 2019, 19(4): 1948-1958.
doi: 10.1007/s11368-018-2192-z |
[100] |
Chen L, Li KK, Shi WJ, Wang XL, Wang ET, Liu JF, Sui XH, Mi GH, Tian CF, Chen WX. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping. Geoderma, 2021, 393: 114999.
doi: 10.1016/j.geoderma.2021.114999 |
[101] |
Wang C, Zheng MM, Song WF, Wen SL, Wang BR, Zhu CQ, Shen RF. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem, 2017, 113: 240-249.
doi: 10.1016/j.soilbio.2017.06.019 |
[102] |
Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Wu YY, Zhu M, Yu W, Yao HY, Zhu YG, Chu HY. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 2019, 7(1): 143.
doi: 10.1186/s40168-019-0757-8 pmid: 31672173 |
[103] |
Coelho MRR, de Vos M, Carneiro NP, Marriel IE, Paiva E, Seldin L. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. Fems Microbiol Lett, 2010, 29(1): 15-22.
doi: 10.1111/fml.1985.29.issue-1-2 |
[104] |
Sun QQ, Zheng YM, Yu TY, Wu Y, Yang JS, Wu ZF, Wu JX, Li SX. Responses of soil diazotrophic diversity and community composition of nodulating and non- nodulating peanuts (Arachis hypogaea L.)to nitrogen fertilization. Acta Agro Sinica, 2022, 48(10): 2575-2587.
doi: 10.3724/SP.J.1006.2022.14174 |
孙棋棋, 郑永美, 于天一, 吴月, 杨吉顺, 吴正锋, 吴菊香, 李尚霞. 施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响. 作物学报, 2022, 48(10): 2575-2587.
doi: 10.3724/SP.J.1006.2022.14174 |
|
[105] | Yazaki W, Shimasaki T, Aoki Y, Masuda S, Shibata A, Suda W, Shirasu K, Yazaki K, Sugiyama A. Nitrogen deficiency-induced bacterial community shifts in soybean roots. Microbes Environ, 2021, 36(3): E21004. |
[106] |
Lagunas B, Achom M, Bonyadi-Pour R, Pardal AJ, Richmond BL, Sergaki C, Vázquez S, Schäfer P, Ott S, Hammond J, Gifford ML. Regulation of resource partitioning coordinates nitrogen and rhizobia responses and autoregulation of nodulation in Medicago truncatula. Mol Plant, 2019, 12(6): 833-846.
doi: S1674-2052(19)30127-3 pmid: 30953787 |
[107] |
Zhang B, Wang MD, Sun YF, Zhao P, Liu C, Qing K, Hu XT, Zhong ZD, Cheng JL, Wang HJ, Peng YQ, Shi JJ, Zhuang LL, Du S, He M, Wu H, Liu M, Chen SC, Wang H, Chen X, Fan W, Tian KW, Wang Y, Chen Q, Wang SX, Dong FM, Yang CY, Zhang MC, Song QJ, Li YG, Wang XL. Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection. Nat Plants, 2021, 7(1): 73-86.
doi: 10.1038/s41477-020-00832-7 pmid: 33452487 |
[108] |
Wang H, Gu CT, Liu XF, Yang CW, Li WB, Wang SD. Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community. Front Microbiol, 2020, 11: 750.
doi: 10.3389/fmicb.2020.00750 pmid: 32528420 |
[109] |
Li GL, Li PF, Wu M, Liu K, Evangelos P, Liu J, Liu M, Li ZP. Variation in rhizosphere microbial communities and its association with the nodulation ability of peanut. Arch Agron Soil Sci, 2022, 69(5): 759-770.
doi: 10.1080/03650340.2022.2033734 |
[110] | Ding H, Sun YX, Dai LX, Xu Y, Zhang GC, Qin WW, Zhang ZM. Effects of drought stress and low nitrogen on bacterial community structure and diversity in peanut rhizosphere soil. J Peanut Science, 2021, 50(3): 11-18. |
丁红, 孙运霞, 戴良香, 徐扬, 张冠初, 秦斐斐, 张智猛. 干旱胁迫和低氮对花生根际土壤细菌群落结构和多样性的影响. 花生学报, 2021, 50(3): 11-18. | |
[111] | Liang M, Meng WW, Chen ZD, Shen Y, Liu YH, Shen Y, Liu Z, Nan ZW, Xu J, Zhang Z. Effects of nitrogen application levels on microbial community structure and diversity in peanut rhizosphere soil. Shandong Agri Sciences, 2023, 55(2): 78-83. |
梁满, 孟维伟, 陈志德, 沈一, 刘永惠, 沈悦, 刘柱, 南镇武, 徐杰, 张正. 施氮水平对花生根际土壤微生物群落结构和多样性的影响. 山东农业科学, 2023, 55(2): 78-83. | |
[112] | Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet, 2015, 11(6): e1005280. |
[113] |
Liu J, Tao Wang E, Ren DW, Chen WX. Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Arch Microbiol, 2010, 192(3): 229-234.
doi: 10.1007/s00203-010-0543-2 |
[114] |
Gano-Cohen KA, Stokes PJ, Blanton MA, Wendlandt CE, Hollowell AC, Regus JU, Kim D, Patel S, Pahua VJ, Sachs JL. Nonnodulating Bradyrhizobium spp. modulate the benefits of legume-rhizobium mutualism. Appl Environ Microb, 2016, 82(17): 5259-5268.
doi: 10.1128/AEM.01116-16 pmid: 27316960 |
[115] |
Preyanga R, Anandham R, Krishnamoorthy R, Senthilkumar M, Gopal NO, Vellaikumar A, Meena S. Groundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotion. Rhizosphere, 2021, 17: 100309.
doi: 10.1016/j.rhisph.2021.100309 |
[1] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[2] | 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析[J]. 遗传, 2019, 41(11): 1050-1059. |
[3] | 彭文舫,吕建伟,任小平,黄莉,赵新燕,文奇根,姜慧芳. 花生抗青枯病相关基因的差异表达[J]. 遗传, 2011, 33(4): 389-396. |
[4] | 侯卫国,连宾. 慢生根瘤菌属结瘤基因的进化及遗传分析[J]. 遗传, 2007, 29(1): 118-118―126. |
[5] | 雷,永,廖伯寿,王圣玉,张银波,李,栋,姜慧芳. 花生黄曲霉侵染抗性的SCAR标记[J]. 遗传, 2006, 28(9): 1107-1111. |
[6] | 魏东,周俊初. 用电脉冲法将外源质粒DNA导入花生根瘤菌的研究[J]. 遗传, 1996, 18(3): 30-33. |
[7] | 黄世贞,MA Djordjevic,BG Rolfe. 导入三叶草根瘤菌寄主范围基因对豌豆根瘤菌侵染白三叶草的影响[J]. 遗传, 1992, 14(6): 1-3. |
[8] | 彭俊华,. 氮素水平对釉、粳稻主要数量性状遗传力的影响[J]. 遗传, 1991, 13(3): 4-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: