遗传 ›› 2023, Vol. 45 ›› Issue (5): 367-378.doi: 10.16288/j.yczz.23-084
刘永强1(), 李威威1(), 刘昕禹2, 储成才1,3()
收稿日期:
2023-03-31
修回日期:
2023-04-25
出版日期:
2023-05-20
发布日期:
2023-05-04
通讯作者:
储成才
E-mail:yqliu@genetics.ac.cn;liwei@genetics.ac.cn;ccchu@scau.edu.cn
作者简介:
刘永强,博士,研究方向:水稻氮高效利用分子机制解析。E-mail: 基金资助:
Yongqiang Liu1(), Weiwei Li1(), Xinyu Liu2, Chengcai Chu1,3()
Received:
2023-03-31
Revised:
2023-04-25
Online:
2023-05-20
Published:
2023-05-04
Contact:
Chu Chengcai
E-mail:yqliu@genetics.ac.cn;liwei@genetics.ac.cn;ccchu@scau.edu.cn
Supported by:
摘要:
氮肥是作物产量增加最主要的驱动因素,然而氮肥滥用会造成生态环境的严重破坏。因此,提高作物氮素利用效率(nitrogen use efficiency,NUE)对未来农业可持续发展至关重要。产量性状对氮素的敏感性是衡量作物氮素利用效率的重要指标。禾本科作物的分蘖数、穗粒数和粒重是产量的直接决定因子,虽然影响三者本身的分子机制已有大量研究,但氮素对这些性状的调控机理仍知之甚少。分蘖数是对氮素响应最为敏感的性状之一,也是氮肥促进作物增产的关键要素。因此,研究氮素如何调控水稻的分蘖发育对于提高作物产量尤为重要。本文总结了水稻氮素利用效率的影响因素和分蘖发育的调控机理,聚焦氮素如何调控水稻分蘖发育的机制,并对该领域未来研究工作进行了展望,以期为作物氮高效精准改良提供参考。
刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378.
Yongqiang Liu, Weiwei Li, Xinyu Liu, Chengcai Chu. Molecular mechanism of tillering response to nitrogen in rice[J]. Hereditas(Beijing), 2023, 45(5): 367-378.
[1] |
Zhang ZH, Gao SP, Chu CC. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theor Appl Genet, 2020, 133(5): 1365-1384.
doi: 10.1007/s00122-019-03527-6 pmid: 31919537 |
[2] |
Hu B, Wang W, Chen JJ, Liu YQ, Chu CC. Genetic improvement toward nitrogen-use efficiency in rice: lessons and perspectives. Mol Plant, 2023, 16(1): 64-74.
doi: 10.1016/j.molp.2022.11.007 |
[3] |
Good AG, Shrawat AK, Muench DG. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004, 9(12): 597-605.
doi: 10.1016/j.tplants.2004.10.008 pmid: 15564127 |
[4] |
Liu YQ, Wang HR, Jiang ZM, Wang W, Xu RN, Wang QH, Zhang ZH, Li AF, Liang Y, Ou SJ, Liu XJ, Cao SY, Tong HN, Wang YH, Zhou F, Liao H, Hu B, Chu CC. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605.
doi: 10.1038/s41586-020-03091-w |
[5] |
Xu GH, Fan XR, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450 |
[6] |
Hawkesford MJ, Griffiths S. Exploiting genetic variation in nitrogen use efficiency for cereal crop improvement. Curr Opin Plant Biol, 2019, 49: 35-42.
doi: S1369-5266(18)30115-8 pmid: 31176099 |
[7] |
Nacry P, Bouguyon E, Gojon A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil, 2013, 370: 1-29.
doi: 10.1007/s11104-013-1645-9 |
[8] |
Li H, Hu B, Chu CC. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot, 2017, 68(10): 2477-2488.
doi: 10.1093/jxb/erx101 pmid: 28419301 |
[9] |
Tegeder M. Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol, 2012, 15(3): 315-321.
doi: 10.1016/j.pbi.2012.02.001 pmid: 22366488 |
[10] |
Liu XJ, Hu B, Chu CC. Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics, 2022, 49(5): 394-404.
doi: 10.1016/j.jgg.2021.12.006 |
[11] |
Liu YQ, Hu B, Chu CC. Toward improving nitrogen use efficiency in rice: utilization, coordination, and availability. Curr Opin Plant Biol, 2023, 71: 102327.
doi: 10.1016/j.pbi.2022.102327 |
[12] |
Chen RZ, Deng YW, Ding YL, Guo JX, Qiu J, Wang B, Wang CS, Xie YY, Zhang ZH, Chen JX, Chen LT, Chu CC, He GC, He ZH, Huang XH, Xing YZ, Yang SH, Xie DX, Liu YG, Li JY. Rice functional genomics: decades' efforts and roads ahead. Sci China Life Sci, 2022, 65(1): 33-92.
doi: 10.1007/s11427-021-2024-0 |
[13] |
Luo L, Zhang YL, Xu GH. How does nitrogen shape plant architecture? J Exp Bot, 2020, 71(15): 4415-4427.
doi: 10.1093/jxb/eraa187 pmid: 32279073 |
[14] |
Wang B, Smith SM, Li JY. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800 |
[15] |
Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY. Control of tillering in rice. Nature, 2003, 422(6932): 618-621.
doi: 10.1038/nature01518 |
[16] |
Xu C, Wang YH, Yu YC, Duan JB, Liao ZG, Xiong GS, Meng XB, Liu GF, Qian Q, Li JY. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat Commun, 2012, 3: 750.
doi: 10.1038/ncomms1743 |
[17] |
Lu ZF, Shao GN, Xiong JS, Jiao YQ, Wang J, Liu GF, Meng XB, Liang Y, Xiong GS, Wang YH, Li JY. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics, 2015, 42(2): 71-78.
doi: 10.1016/j.jgg.2014.12.005 pmid: 25697101 |
[18] |
Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano HY. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell, 2015, 27(4): 1173-1184.
doi: 10.1105/tpc.15.00074 |
[19] |
Oikawa T, Kyozuka J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell, 2009, 21(4): 1095-1108.
doi: 10.1105/tpc.108.065425 pmid: 19346465 |
[20] |
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang XH, Yoshida H, Kyozuka J, Chen F, Sato Y. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell, 2011, 23(9): 3276-3287.
doi: 10.1105/tpc.111.088765 |
[21] |
Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet, 2006, 38(5): 594-597.
doi: 10.1038/ng1784 |
[22] |
Doebley J, Stec A, Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141(1): 333-346.
doi: 10.1093/genetics/141.1.333 pmid: 8536981 |
[23] |
Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386(6624): 485-488.
doi: 10.1038/386485a0 |
[24] |
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003, 33(3): 513-520.
doi: 10.1046/j.1365-313x.2003.01648.x pmid: 12581309 |
[25] |
Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42(6): 541-544.
doi: 10.1038/ng.591 |
[26] |
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42(6): 545-549.
doi: 10.1038/ng.592 |
[27] |
Lu ZF, Yu H, Xiong GS, Wang J, Jiao YQ, Liu GF, Jing YH, Meng XB, Hu XM, Qian Q, Fu XD, Wang YH, Li JY. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell, 2013, 25(10): 3743-3759.
doi: 10.1105/tpc.113.113639 |
[28] |
Wang J, Yu H, Xiong GS, Lu ZF, Jiao YQ, Meng XB, Liu GF, Chen XW, Wang YH, Li JY. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell, 2017, 29(4): 697-707.
doi: 10.1105/tpc.16.00879 |
[29] |
Duan EC, Wang YH, Li XH, Lin QB, Zhang T, Wang YP, Zhou CL, Zhang H, Jiang L, Wang JL, Lei CL, Zhang X, Guo XP, Wang HY, Wan JM. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. Plant Cell, 2019, 31(5): 1026-1042.
doi: 10.1105/tpc.19.00023 |
[30] |
Wang SS, Wu K, Qian Q, Liu Q, Li Q, Pan YJ, Ye YF, Liu XY, Wang J, Zhang JQ, Li S, Wu YJ, Fu XD. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res, 2017, 27(9): 1142-1156.
doi: 10.1038/cr.2017.98 pmid: 28776570 |
[31] |
Vanstraelen M, Benková E. Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol, 2012, 28: 463-487.
doi: 10.1146/annurev-cellbio-101011-155741 pmid: 22856461 |
[32] |
Xia TY, Chen HQ, Dong SJ, Ma ZY, Ren HB, Zhu XD, Fang XH, Chen F. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice. Plant J, 2020, 104(6): 1635-1647.
doi: 10.1111/tpj.v104.6 |
[33] |
Xu M, Zhu L, Shou HX, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol, 2005, 46(10): 1674-1681.
doi: 10.1093/pcp/pci183 |
[34] |
Chen YN, Fan XR, Song WJ, Zhang YL, Xu GH. Over‐expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10(2): 139-149.
doi: 10.1111/pbi.2011.10.issue-2 |
[35] |
Lu GW, Coneva V, Casaretto JA, Ying S, Mahmood K, Liu F, Nambara E, Bi YM, Rothstein SJ. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant J, 2015, 83(5): 913-925.
doi: 10.1111/tpj.2015.83.issue-5 |
[36] |
Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 2010, 51(7): 1127-1135.
doi: 10.1093/pcp/pcq083 pmid: 20547591 |
[37] |
Duan JB, Yu H, Yuan K, Liao ZG, Meng XB, Jing YH, Liu GF, Chu JF, Li JY. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc Natl Acad Sci USA, 2019, 116(28): 14319-14324.
doi: 10.1073/pnas.1810980116 |
[38] |
Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51(6): 1019-1029.
doi: 10.1111/j.1365-313X.2007.03210.x |
[39] |
Lin H, Wang RX, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Su Z, Li JY, Wang YH. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21(5): 1512-1525.
doi: 10.1105/tpc.109.065987 pmid: 19470589 |
[40] |
Zou JH, Zhang SY, Zhang WP, Li G, Chen ZX, Zhai WX, Zhao XF, Pan XB, Xie Q, Zhu LH. The rice HIGH- TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48(5): 687-698.
doi: 10.1111/tpj.2006.48.issue-5 |
[41] |
Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46(1): 79-86.
doi: 10.1093/pcp/pci022 pmid: 15659436 |
[42] |
Jiang L, Liu X, Xiong GS, Liu HH, Chen FL, Wang L, Meng XB, Liu GF, Yu H, Yuan YD, Yi W, Zhao LH, Ma HL, He YZ, Wu ZS, Melcher K, Qian Q, Xu HE, Wang YH, Li JY. DWARF53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504(7480): 401-405.
doi: 10.1038/nature12870 |
[43] |
Yao RF, Ming ZH, Yan LM, Li SH, Wang F, Ma S, Yu CT, Yang M, Chen L, Chen LH, Li YW, Yan C, Miao D, Sun ZY, Yan JB, Sun YN, Wang L, Chu JF, Fan SL, He W, Deng HT, Nan FJ, Li JY, Rao ZH, Lou ZY, Xie DX. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 2016, 536(7617): 469-473.
doi: 10.1038/nature19073 |
[44] |
Guo SY, Xu YY, Liu HH, Mao ZW, Zhang C, Ma Y, Zhang QR, Meng Z, Chong K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4: 1566.
doi: 10.1038/ncomms2542 |
[45] |
Song XG, Lu ZF, Yu H, Shao GN, Xiong JS, Meng XB, Jing YH, Liu GF, Xiong GS, Duan JB, Yao XF, Liu CM, Li HQ, Wang YH, Li JY. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res, 2017, 27(9): 1128-1141.
doi: 10.1038/cr.2017.102 pmid: 28809396 |
[46] | Dai MQ, Zhao Y, Ma Q, Hu YF, Hedden P, Zhang QF, Zhou DX. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol, 2007, 144(1): 121-133. |
[47] |
Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 2008, 20(10): 2603-2618.
doi: 10.1105/tpc.108.060913 |
[48] |
Liao ZG, Yu H, Duan JB, Yuan K, Yu CJ, Meng XB, Kou LQ, Chen MJ, Jing YH, Liu GF, Smith SM, Li JY. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10(1): 2738.
doi: 10.1038/s41467-019-10667-2 pmid: 31227696 |
[49] |
Tong HN, Chu CC. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci, 2018, 23(11): 1016-1028.
doi: S1360-1385(18)30187-0 pmid: 30220494 |
[50] |
Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang JL, Wan JM, Zhai HQ, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008, 20(8): 2130-2145.
doi: 10.1105/tpc.107.055087 |
[51] |
Tong HN, Jin Y, Liu WB, Li F, Fang J, Yin YH, Qian Q, Zhu LH, Chu CC. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009, 58(5): 803-816.
doi: 10.1111/tpj.2009.58.issue-5 |
[52] |
Fang ZM, Ji YY, Hu J, Guo RK, Sun SY, Wang XL. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering. Mol Plant, 2020, 13(4): 586-597.
doi: 10.1016/j.molp.2019.12.005 |
[53] |
Kebrom TH, Burson BL, Finlayson SA. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol, 2006, 140(3): 1109-1117.
doi: 10.1104/pp.105.074856 |
[54] | Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R, Schmidt R, Doebley J, Brutnell TP, Jackson DP. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci USA, 2011, 108(33): E506-E512. |
[55] |
Kumar V, Kim SH, Adnan MR, Heo J, Jeong JH, Priatama RA, Lee JJ, Kim CM, Je BI, Park SJ, Xuan YH, Han CD. Tiller outgrowth in rice (Oryza sativa L.) is controlled by OsGT1, which acts downstream of FC1 in a PhyB- independent manner. J Plant Biol, 2021, 64: 417-430.
doi: 10.1007/s12374-021-09310-9 |
[56] |
Chen LP, Zhao Y, Xu SJ, Zhang ZY, Xu YY, Zhang JY, Chong K. OsMADS 57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol, 2018, 218(1): 219-231.
doi: 10.1111/nph.14977 |
[57] |
Du H, Huang F, Wu N, Li XH, Hu HH, Xiong LZ. Integrative regulation of drought escape through ABA-dependent and-independent pathways in rice. Mol Plant, 2018, 11(4): 584-597.
doi: 10.1016/j.molp.2018.01.004 |
[58] |
Lyu J, Huang LY, Zhang SL, Zhang YS, He WM, Zeng P, Zeng Y, Huang GF, Zhang J, Ning M, Bao YC, Zhao SL, Fu Q, Wade LJ, Chen H, Wang W, Hu FY. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nat Commun, 2020, 11(1): 725.
doi: 10.1038/s41467-019-14264-1 |
[59] |
Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. An update on the signals controlling shoot branching. Trends Plant Sci, 2019, 24(3): 220-236.
doi: S1360-1385(18)30288-7 pmid: 30797425 |
[60] |
Patil SB, Barbier FF, Zhao JF, Zafar SA, Uzair M, Sun YL, Fang JJ, Perez-Garcia MD, Bertheloot J, Sakr S, Fichtner F, Chabikwa TG, Yuan SJ, Beveridge CA, Li XY. Sucrose promotes D53 accumulation and tillering in rice. New Phytol, 2022, 234(1): 122-136.
doi: 10.1111/nph.v234.1 |
[61] |
Gao HB, Wang WG, Wang YH, Liang Y. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Mol Breeding, 2019, 39: 167.
doi: 10.1007/s11032-019-1076-2 |
[62] |
Liu ZL, Meng JR, Sun ZF, Su JK, Luo XY, Song JM, Li PF, Sun YK, Yu CL, Peng XL. Zinc application after low temperature stress promoted rice tillers recovery: aspects of nutrient absorption and plant hormone regulation. Plant Sci, 2022, 314: 111104.
doi: 10.1016/j.plantsci.2021.111104 |
[63] |
Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci, 2006, 11(9): 440-448.
pmid: 16899391 |
[64] |
Xu JX, Zha MR, Li Y, Ding YF, Chen L, Ding CQ, Wang SH. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep, 2015, 34(9): 1647-1662.
doi: 10.1007/s00299-015-1815-8 |
[65] |
Wu K, Wang SS, Song WZ, Zhang JQ, Wang Y, Liu Q, Yu JP, Ye YF, Li S, Chen JF, Zhao Y, Wang J, Wu XK, Wang MY, Zhang YJ, Liu BM, Wu YJ, Harberd NP, Fu XD. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367(6748): eaaz2046.
doi: 10.1126/science.aaz2046 |
[66] |
Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol, 2014, 55(5): 897-912.
doi: 10.1093/pcp/pcu023 pmid: 24486766 |
[67] |
Qiao SL, Sun SY, Wang LL, Wu ZH, Li CX, Li XM, Wang T, Leng LN, Tian WS, Lu TG, Wang XL. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell, 2017, 29(2): 292-309.
doi: 10.1105/tpc.16.00611 |
[68] |
Gu PY, Luo FF, Tao WQ, Li Y, Wang DJ, Wu X, Ju XX, Chao L, Zhang YL. Higher nitrogen content and auxin export from rice tiller enhance low-ammonium-dependent tiller outgrowth. J Plant Physiol, 2022, 268: 153562.
doi: 10.1016/j.jplph.2021.153562 |
[69] |
Hou MM, Luo FF, Wu DX, Zhang XH, Lou MM, Shen DF, Yan M, Mao CZ, Fan XR, Xu GH, Zhang YL. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytol, 2021, 229(2): 935-949.
doi: 10.1111/nph.v229.2 |
[70] |
Zhang SY, Zhu LM, Shen CB, Ji Z, Zhang HP, Zhang T, Li Y, Yu JP, Yang N, He YB, Tian YN, Wu K, Wu JY, Harberd NP, Zhao YD, Fu XD, Wang SK, Li S. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell, 2021, 33(3): 566-580.
doi: 10.1093/plcell/koaa037 |
[71] |
Li X, Xia KF, Liang Z, Chen KL, Gao CX, Zhang MY. Micro RNA 393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci Rep, 2016, 6: 32158.
doi: 10.1038/srep32158 |
[72] |
Huang SJ, Liang ZH, Chen S, Sun HW, Fan XR, Wang CL, Xu GH, Zhang YL. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol, 2019, 180(2): 882-895.
doi: 10.1104/pp.19.00142 pmid: 30886113 |
[73] |
Sun HW, Guo XL, Qi XJ, Feng F, Xie XN, Zhang YL, Zhao QZ. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply. Plant J, 2021, 106(3): 649-660.
doi: 10.1111/tpj.v106.3 |
[74] | Marschner H. Marschner's Mineral Nutrition of Higher Plants. Third Edition. Academic press, 2011. |
[75] |
Schimel JP, Chapin FS. Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants complete well for amino acid N. Ecology, 1996, 77(7): 2142-2147.
doi: 10.2307/2265708 |
[76] |
Frommer WB, Hummel S, Riesmeier JW. Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci USA, 1993, 90(3): 5944-5948.
doi: 10.1073/pnas.90.13.5944 |
[77] |
Hsu LC, Chiou TJ, Chen L, Bush DR. Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA, 1993, 90(16): 7441-7445.
pmid: 8356039 |
[78] |
Lu K, Wu BW, Wang J, Zhu W, Nie HP, Qian JJ, Huang WT, Fang ZM. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J, 2018, 16(10): 1710-1722.
doi: 10.1111/pbi.2018.16.issue-10 |
[79] |
Wang J, Wu BW, Lu K, Wei Q, Qian JJ, Chen YP, Fang ZM. The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiol, 2019, 180(2): 1031-1045.
doi: 10.1104/pp.19.00034 pmid: 30890663 |
[80] |
Ji YY, Huang WT, Wu BW, Fang ZM, Wang XL.The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. J Exp Bot, 2020, 71(16): 4763-4777.
doi: 10.1093/jxb/eraa256 pmid: 32485736 |
[81] |
Liu YQ, Chu CC. Improving maize seed protein content and nitrogen-use efficiency by a teosinte asparagine synthetase. Mol Plant, 2023, 16(3): 497-499.
doi: 10.1016/j.molp.2022.12.001 |
[82] |
Luo L, Qin RY, Liu T, Yu M, Yang TW, Xu GH. OsASN1 plays a critical role in asparagine-dependent rice development. Int J Mol Sci, 2018, 20(1): 130.
doi: 10.3390/ijms20010130 |
[83] |
Redillas MCFR, Bang SW, Lee DK, Kim YS, Jung H, Chung PJ, Suh JW, Kim JK. Allantoin accumulation through overexpression of ureide permease1 improves rice growth under limited nitrogen conditions. Plant Biotechnol J, 2019, 17(7): 1289-1301.
doi: 10.1111/pbi.2019.17.issue-7 |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[3] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[4] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[5] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[6] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[7] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[8] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[9] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[10] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[11] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[12] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[13] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[14] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[15] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: